Skip to main content

Advertisement

Log in

ENSO teleconnections in an ensemble of CORDEX-CORE regional simulations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Recent high-spatial-resolution regional simulations from the global program, coordinated regional climate downscaling experiment-coordinated output for regional evaluations (CORDEX-CORE), are examined to evaluate the capability of regional climate models (RCMs) to represent the El Niño–Southern Oscillation (ENSO) precipitation and surface air temperature teleconnections over five regions of the world. We find that the ensemble and individual RCM simulations generally preserve the broad regional scale ENSO signal from the general circulation models (GCMs) over different regions around of the world, reproducing the majority of the observed regional responses to ENSO forcing. Furthermore, in some cases, the RCM ensemble and individual models can improve the spatial pattern of teleconnections and the amplitudes of these patterns compared to the driving global models. Among such cases are the precipitation teleconnections over southern Africa, North America and the Arabian–Asian region. Our study presents the first analysis of ENSO teleconnections in GCM-driven RCMs over multiple regions, and it clearly shows the potential value of using such models non only in a climate change research context, but also in seasonal to annual prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abid MA, Almazroui M, Kucharski F et al (2018) ENSO relationship to summer rainfall variability and its potential predictability over Arabian Peninsula region. NPJ Clim Atmos Sci 1:1. https://doi.org/10.1038/s41612-017-0003-7

    Article  Google Scholar 

  • Achuta Rao K, Sperber K (2006) ENSO simulations in coupled ocean-atmosphere models: are the current models better? Clim Dyn 27:1–16

    Article  Google Scholar 

  • Ashfaq M et al (2017) Sources of errors in the simulation of south Asian summer monsoon in the CMIP5 GCMs. Clim Dyn 49(1–2):193–223

    Article  Google Scholar 

  • Beck HE, van Dijk AIJM, Levizzani V, Schellekens J, Miralles DG, Martens B, de Roo A (2017a) MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol Earth Syst Sci 21:589–615

    Article  Google Scholar 

  • Beck HE et al (2017b) Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol Earth Syst Sci 21:6201–6217

    Article  Google Scholar 

  • Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2013) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1999–2018

    Article  Google Scholar 

  • Bentsen M, Bethke I, Debernard JB, Iversen T, Kirkevåg A, Seland Ø, Drange H, Roelandt C, Seierstad IA, Hoose C, Kristjansson JE (2013) The norwegian earth system model, NORESM1-M - part 1: description and basic evaluation of the physical climate. Geosci Model Dev 6(3):687–720

    Article  Google Scholar 

  • Boulard D, Pohl B, Crétat J, Vigaud N (2012) Downscaling large-scale climate variability using a regional climate model: the case of ENSO over Southern Africa. Clim Dyn 40:1141–1168

    Article  Google Scholar 

  • Bretherton CS, Park S (2009) A new moist turbulence parameterization in the community atmosphere model. J Clim 22:3422–3448

    Article  Google Scholar 

  • Bretherton CS, McCaa JR, Grenier H (2004) A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. I. Description and 1D results. Mon Weather Rev 132:864–882

    Article  Google Scholar 

  • Cai W, van Rensch P, Cowan T, Sullivan A (2010) Asymmetry in ENSO teleconnection with regional rainfall, its multidecadal variability, and impact. J Clim 23:4944–4955

    Article  Google Scholar 

  • Cash BA, Schneider EK, Bengtsson L (2005) Origin of regional climate differences: role of boundary conditions and model formulation in two GCMs. Clim Dyn 25:709–723. https://doi.org/10.1007/s00382-005-0069-5

    Article  Google Scholar 

  • Chiodi AM, Harrison DE (2015) Equatorial Pacific easterly wind surges and the onset of La Niña events. J Clim 28:776–792. https://doi.org/10.1175/JCLI-D-14-00227.1

    Article  Google Scholar 

  • Coelho CAS, Goddard L (2009) El Nino-induced tropical droughts in climate change projections. J Clim 22:6456–6476

    Article  Google Scholar 

  • Coppola E, Sobolowski S, Pichelli E et al (2018) A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Clim Dyn. https://doi.org/10.1007/s00382-018-4521-8

    Article  Google Scholar 

  • Coppola E, Raffaele F, Giorgi F et al (2020) Climate hazard indices projections based on CORDEX-CORE, CMIP5, CMIP6 ensembles. Clim Dyn (submitted)

  • da Rocha RP, Reboita MS, Dutra LMM, Llopart M, Coppola E (2014) Interannual variability associated with ENSO: present and future climate projections of RegCM4 for South America-CORDEX domain. Clim Change 125:95–109

    Article  Google Scholar 

  • Diaz HF, Hoerling MP, Eischeid JK (2001) ENSO variability, teleconnections and climate change. Int J Climatol 21:1845–1862

    Article  Google Scholar 

  • Dieppois B, Rouault M, New M (2015) The impact of ENSO on southern African rainfall in CMIP5 ocean atmosphere coupled climate models. Clim Dyn 45:2425–2442

    Article  Google Scholar 

  • Dunne JP et al (2012) GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J Clim 25:6646–6665

    Article  Google Scholar 

  • Elguindi N, Giorgi F, Turuncoglu UU (2014) Assessment of CMIP5 global model simulations over the sub-set of CORDEX domains used in the phase I CREMA experiment. Clim Change. https://doi.org/10.1007/S10584-013-0935-9

    Article  Google Scholar 

  • Emanuel K (1991) A scheme for representing cumulus convection in large scale models. J Atmos Sci 48:2313–2335

    Article  Google Scholar 

  • Endris HS, Omondi P, Jain S et al (2013) Assessment of the performance of CORDEX regional climate models in simulating east Africa Rainfall. J Clim 26:8453–8475

    Article  Google Scholar 

  • Endris HS, Lennard C, Hewitson B et al (2018) Future changes in rainfall associated with ENSO, IOD and changes in the mean state over Eastern Africa. Clim Dyn 52:2029–2053

    Article  Google Scholar 

  • Giorgetta MA, Jungclaus JH et al (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. J Adv Model Earth Syst 5(3):572–597

    Article  Google Scholar 

  • Giorgi F (2019) Thirty years of regional climate modeling: where are we and where are we going next? J Geophys Res Atmos 124:5696–5723

    Google Scholar 

  • Giorgi F, Gutowski WJ (2015) Regional dynamical downscaling and the CORDEX initiative. Annu Rev Environ Resour 40:467–490

    Article  Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

    Article  Google Scholar 

  • Grenier H, Bretherton CS (2001) A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon Weather Rev 129:357–377

    Article  Google Scholar 

  • Guilyardi E et al (2004) Representing El Niño in coupled ocean–atmosphere GCMs: the dominant role of the atmospheric component. J Clim 17:4623–4629

    Article  Google Scholar 

  • Guilyardi E, Braconnot P, Jin F-F, Kim ST, Kolasinski M, Li T, Musat I (2009) Atmosphere feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. J Clim 22:5698–5718

    Article  Google Scholar 

  • Gutowski WJ Jr, Giorgi F, Timbal B, Frigon A, Jacob D, Kang HS, Raghavan K, Lee B, Lennard C, Nikulin G, O’Rourke E, Rixen M, Solman S, Stephenson T, Tangang F (2016) WCRP coordinated regional downscaling experiment (CORDEX): a diagnostic MIP for CMIP6. Geosci Model Dev 9:4087–4095. https://doi.org/10.5194/gmd-9-4087-2016

    Article  Google Scholar 

  • Herceg Bulić I (2010) The sensitivity of climate response to the wintertime Niño3.4 sea surface temperature anomalies of 1855–2002. Int J Climatol. https://doi.org/10.1002/joc.2255

    Article  Google Scholar 

  • Herceg Bulić I, Kucharski F (2012) Delayed ENSO impact on spring precipitation over North/Atlantic European region. Clim Dyn 38:2593–2612. https://doi.org/10.1007/s00382-011-1151-9

    Article  Google Scholar 

  • Hersbach H, Dee D (2016) ERA5 reanalysis is in production, ECMWF Newsletter, vol 147, p 7. https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production. Accessed 14 Nov 2019

  • Holtslag A, de Bruijn E, Pan H-L (1990) A high resolution air mass transformation model for short range weather forecasting. Mon Weather Rev 118:1561–1575

    Article  Google Scholar 

  • Jacob D, Elizalde A, Haensler A, Hagemann S, Kumar P, Podzun R, Rechid D, Remedio AR, Saeed F, Sieck K, Teichmann C, Wilhelm C (2012) Assessing the transferability of the regional climate model REMO to different coordinated regional climate downscaling experiment (CORDEX) regions. Atmosphere 3(1):181–199. https://doi.org/10.3390/atmos3010181

    Article  Google Scholar 

  • Jiang P, Gautam MR, Zhu J, Yu Z (2013) How well do the GCMs/RCMs capture the multi-scale temporal variability of precipitation in the Southwestern United States? J Hydrol 479:75–85. https://doi.org/10.1016/j.jhydrol.2012.11.041

    Article  Google Scholar 

  • Jones CD, Hughes JK, Bellouin N, Hardiman SC, Jones GS, Knight J, Liddicoat S, O’Connor FM, Andres RJ, Bell C, Boo KO, Bozzo A, Butchart N, Cadule P, Corbin KD, Doutriaux-Boucher M, Friedlingstein P, Gornall J, Gray L, Halloran PR, Hurtt G, Ingram WJ, Lamarque JF, Law RM, Meinshausen M, Osprey S, Palin EJ, Parsons Chini L, Raddatz T, Sanderson MG, Sellar AA, Schurer A, Valdes P, Wood N, Woodward S, Yoshioka M, Zerroukat M (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4(3):543–570. https://doi.org/10.5194/gmd-4-543-2011

    Article  Google Scholar 

  • Joseph R, Nigam S (2006) ENSO evolution and teleconnections in IPCC’s twentieth-century climate simulations: realistic representation? J Clim 19:4360–4377

    Article  Google Scholar 

  • Kain J-S (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteorol 43(1):170–181

    Article  Google Scholar 

  • Kain J-S, Fritsch J-M (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47(23):2784–2802

    Article  Google Scholar 

  • Kayano MT, Pestrelo de Oliveira C, Andreoli RV (2009) Interannual relations between South American rainfall and tropical sea surface temperature anomalies before and after 1976. Int J Climatol 29:1439–1448

    Article  Google Scholar 

  • King AD, Vincent CL (2018) Using global and regional model simulations to understand Maritime Continent wet-season rainfall variability. Geophys Res Lett 45(12):534–543

    Google Scholar 

  • King AD, van Oldenborgh GJ, Karoly DJ (2016) Climate change and El Niño increase likelihood of Indonesian heat and drought. Bull Am Meteorol Soc 97(12):113–117

    Article  Google Scholar 

  • Kucharski F, Bracco A, Yoo JH, Molteni F (2007) Low-frequency variability of the Indian monsoon-ENSO relationship and the tropical Atlantic: the “weakening” of the 1980s and 1990s. J Clim. https://doi.org/10.1175/jcli4254.1

    Article  Google Scholar 

  • Langenbrunner B, Neelin JD (2013) Analyzing ENSO teleconnections in CMIP models as a measure of model fidelity in simulating precipitation. J Clim 26:4431–4446

    Article  Google Scholar 

  • Latif M, Sperber K, Arblaster J, Braconnot P, Chen D, Colman A, Cubasch U, Cooper C et al (2001) ENSIP: the El Niño simulation intercomparison project. Clim Dyn 18:255–276

    Article  Google Scholar 

  • Llopart M, Coppola E, Giorgi F, da Rocha R, Cuadra SV (2014) Climate change impact on precipitation for the Amazon and La Plata basins. Clim Change 125(1):111–125

    Article  Google Scholar 

  • Lohmann U, Roeckner E (1996) Design and performance of a new cloud microphysics scheme developed for the ECHAM4 general circulation model. Clim Dyn 12:557–572

    Article  Google Scholar 

  • Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Bound Layer Meteorol 17(2):187–202

    Article  Google Scholar 

  • Manly BF (1997) Randomization and Monte Carlo methods in biology, 2nd edn. Chapman & Hall, New York

    Google Scholar 

  • Mariotti L, Coppola E, Sylla MB, Giorgi F, Piani C (2011) Regional climate model simulation of projected 21st century climate change over an all-Africa domain: comparison analysis of nested and driving model results. J Geophys Res. https://doi.org/10.1029/2010JD015068

    Article  Google Scholar 

  • McGlone D, Vuille M (2012) The associations between El Niño-Southern Oscillation and tropical South American climate in a regional climate model. J Geophys Res 117:D06105. https://doi.org/10.1029/2011JD017066

    Article  Google Scholar 

  • McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314:1739–1745

    Article  Google Scholar 

  • McSweeney CF, Jones RG, Lee RW et al (2015) Selecting CMIP5 GCMs for downscaling over multiple regions. Clim Dyn 44:3237. https://doi.org/10.1007/s00382-014-2418-8

    Article  Google Scholar 

  • Meque A, Abiodun B (2015) Simulating the link between ENSO and summer drought in southern Africa using regional climate models. Clim Dyn 44:1881–1900

    Article  Google Scholar 

  • Nordeng TE (1994) Extended versions of the convective parametrization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. Tech. rep., ECMWF Research Department, European Centre for Medium Range Weather Forecasts, Reading, UK

  • Pal J-S, Small E-E, Eltahir E-A-B (2000) Simulation of regional scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105(D24):29579–29594

    Article  Google Scholar 

  • Pfeifer S (2006) Modeling cold cloud processes with the regional climate model REMO. PhD thesis, University of Hamburg

  • Philander SG (1990) El Niño, La Niña, and the southern oscillation. International geophysics series, vol 46. Academic Press, San Diego

  • Ratna SB, Ratnam JV, Behera SK, Tangang FT, Yamagata T (2017) Validation of the WRF regional climate model over the subregions of Southeast Asia: climatology and interannual variability. Clim Res 71:263–280. https://doi.org/10.3354/cr01445

    Article  Google Scholar 

  • Rayner NA et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407

    Article  Google Scholar 

  • Remedio AR, Teichmann C, Buntemeyer L, Sieck K, Weber T, Rechid D, Hoffmann P, Nam C, Kotova L, Jacob D (2019) Evaluation of new CORDEX simulations using an updated Köppen-Trewartha climate classification. Atmosphere 10(11):726

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115:1606–1626

    Article  Google Scholar 

  • Spencer H, Slingo JM (2003) The simulation of peak and delayed ENSO teleconnections. J Clim 16(11):1757–1774

    Article  Google Scholar 

  • Stevens B, Giorgetta M, Esch M et al (2013) Atmospheric component of the MPI-M earth system model: ECHAM6. J Adv Model Earth Syst 5:146–172. https://doi.org/10.1002/jame.20015

    Article  Google Scholar 

  • Taylor AB, MacKinnon DP (2012) Four applications of permutation methods to testing a single-mediator model. Behav Res 44:806–844. https://doi.org/10.3758/s13428-011-0181-x

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 78:485–498

    Article  Google Scholar 

  • Teichmann C, Jacob D, Remedio AR, Remke T, Buntemeyer L, Hoffmann P et al (2020) Assessing mean climate change signals in the global CORDEX-CORE ensemble. Clim Dyn (submitted)

  • Tiedtke M (1989) A Comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800

    Article  Google Scholar 

  • Tiedtke M (1996) An extension of cloud-radiation parameterization in the ECMWF model: the representation of subgrid-scale variations of optical depth. Mon Weather Rev 124:745–750. https://doi.org/10.1175/1520-0493(1996)124%3C0745:AEOCRP%3E2.0.CO;2

    Article  Google Scholar 

  • Torres-Alavez et al (2020) Future projections in tropical cyclone activity over multiple CORDEX domains from RegCM4 CORDEX-CORE simulations. Clim Dyn (submitted)

  • Tourigny E, Jones C (2009) An analysis of regional climate model performance over the tropical Americas. Part ii: simulating subseasonal variability of precipitation associated with ENSO forcing. Tellus 61A:343–356

    Article  Google Scholar 

  • Trenberth KE, Kumar A, Karoly D, Ropelewski C, Branstator GW, Lau N-C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res Ocean 103:14291–14324

    Article  Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the northern hemisphere winter. Mon Weather Rev 109:784

    Article  Google Scholar 

  • Wang B, Kang I-S, Lee J-Y (2004) Ensemble simulations of Asian-Australian monsoon variability by 11 AGCMS. J Clim 17:803–818

    Article  Google Scholar 

  • Ward PJ, Jongman B, Kummu M, Dettinger MD, Weiland FCS, Winsemius HC (2014) Strong influence of El Niño Southern Oscillation on flood risk around the world. Proc Natl Acad Sci USA 111:15659–15664. https://doi.org/10.1073/pnas.1409822111

    Article  Google Scholar 

  • Watanabe M et al (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335

    Article  Google Scholar 

  • Weare BC (2013) El Niño teleconnections in CMIP5 models. Clim Dyn 41:2165–2177

    Article  Google Scholar 

  • Whan K, Zwiers F (2016) The impact of ENSO and NAL on extreme winter precipitation in North America in observations and regional climate models. Clim Dyn 48:1401–1411

    Article  Google Scholar 

  • Zaroug MAH, Giorgi F, Coppola E, Abdo GM, Eltahir EAB (2014) Simulating the connections of ENSO and the rainfall regime of East Africa and the upper Blue Nile region using a climate model of the tropics. Hydrol Earth Syst Sci 18:4311–4323. https://doi.org/10.5194/hess-18-4311-2014

    Article  Google Scholar 

  • Zeng X, Zhao M, Dickinson R-E (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Clim 11(10):2628–2644

    Article  Google Scholar 

  • Zhang W, Villarini G, Vecchi GA, Murakami H (2019) Rainfall from tropical cyclones: high-resolution simulations and seasonal forecasts. Clim Dyn. https://doi.org/10.1007/s00382-018-4446-2

    Article  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the comments and suggestions of the editor and two anonymous reviewers, which helped improve this manuscript. The RegCM4 simulations for the ICTP institute have been completed thanks to the support of the CINECA supercomputing center, Bologna, Italy and the ISCRA projects HP10BDU7TR and HP10BQCFJ2. The authors would like to thank Graziano Giuliani and Ivan Girotto for their constant support in the preparation of the simulations used in this paper. The authors would also like to thank the CMIP5, as well as the ESGF for providing access to their database where most of the data is available. The study was also supported by the Oak Ridge Leadership Computing Facility and the National Climate-Computing Research Center at the Oak Ridge National Laboratory and the Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany; all of whom provided access to their simulation data. The observations were provided by the Met Office (https://www.metoffice.gov.uk/hadobs/hadisst/), Hylke Beck, the developer of the MSWEP data (http://www.gloh2o.org/) and the Climate Data Store (CDS) of the European Centre for Medium Range Weather Forecasts (ECMWF-ERA5; https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=form)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Abraham Torres-Alavez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres-Alavez, J.A., Giorgi, F., Kucharski, F. et al. ENSO teleconnections in an ensemble of CORDEX-CORE regional simulations. Clim Dyn 57, 1445–1461 (2021). https://doi.org/10.1007/s00382-020-05594-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05594-8

Keywords

Navigation