Skip to main content

Sensitivity of tropical cyclones to convective parameterization schemes in RegCM4

Abstract

This study investigates the sensitivity of simulated tropical cyclones (TC) affecting the Philippines to convective parameterization schemes (CPS) in the Regional Climate Model Version 4 (RegCM4). Five ERA-Interim driven RegCM4 simulations at 25-km horizontal resolution were conducted utilizing the CPS of Grell with Arakawa–Schubert closure (GR), Emanuel (EM), Kain–Fritsch (KF), Tiedtke (TE), and a combined Grell scheme over land and Emanuel over the ocean (GR-EM). Comparisons made between the observed and RegCM4-simulated TCs covering a 30-year period (1981–2010) indicate that the EM scheme yields an annual-mean TC frequency that is closest to observations. The GR-EM scheme, on the other hand, closely reproduces the observed seasonal patterns of TC tracks, spatial patterns of TC track density and TC-associated rainfall, and TC lifespan. The KF scheme is the only CPS that was able to simulate intense TCs (maximum wind speed > 40 m s–1) within the domain. In contrast, both GR and TE schemes largely underestimated the TC frequency, and were only able to simulate weak TCs. Such underestimation in the TC frequency and intensity in the GR and TE simulations can be attributed to the dry mid-tropospheric environment and the absence of a large area with positive low-level relative vorticity over the Pacific Ocean inhibiting TC formation and further development over the area. These findings would be helpful in selecting the more appropriate CPS for TC-related model simulations over the Philippines and in further model improvements, given the climate modeling imperfections and associated biases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Akasaka I, Morishima W, Mikami T (2007) Seasonal march and its difference of rainfall in the Philippines. Int J Climatol 27:715–725. https://doi.org/10.1002/joc.1428

    Article  Google Scholar 

  2. Ali S, Dan L, Fu C, Yang Y (2015) Performance of convective parameterization schemes in Asia using RegCM: simulations in three typical regions for the period 1998–2002. Adv Atmos Sci 32:715–730. https://doi.org/10.1007/s00376-014-4158-4

    Article  Google Scholar 

  3. Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large scale environment. J Atmos Sci 31:674–701. https://doi.org/10.1175/1520-0469(1974)031%3c0674:IOACCE%3e2.0.CO;2

    Article  Google Scholar 

  4. Au-Yeung AYM, Chan JCL (2012) Potential use of a regional climate model in seasonal tropical cyclone activity predictions in the western North Pacific. Clim Dyn 39:783–794. https://doi.org/10.1007/s00382-011-1268-x

    Article  Google Scholar 

  5. Bagtasa G (2017) Contribution of tropical cyclones to rainfall in the Philippines. J Clim 30:3621–3633. https://doi.org/10.1175/JCLI-D-16-0150.1

    Article  Google Scholar 

  6. Barcikowska M, Feser F, Storch HV (2012) Usability of best track data in climate statistics in the western North Pacific. Mon Weather Rev 140:2818–2830. https://doi.org/10.1175/MWR-D-11-00175.1

    Article  Google Scholar 

  7. Bengtsson L, Hodges KI, Esch M, Keenlyside N, Kornblueh L, Luo JJ, Yamagata T (2007) How may tropical cyclones change in a warmer climate? Tellus A Dyn Meteorol Oceanogr. 59(4):539–561. https://doi.org/10.1111/j.1600-0870.2007.00251.x

    Article  Google Scholar 

  8. Berrisford P, Kalberg P, Kobayashi S, Dee D, Uppala S, Simmons AJ, Poli P, Sato H (2011) Atmospheric conservation properties in ERA-Interim. Q J R Meteorol Soc 137:1381–1399. https://doi.org/10.1002/qj.864

    Article  Google Scholar 

  9. Biswas MK, Bernardet L, Dudhia J (2014) Sensitivity of hurricane forecasts to cumulus parameterizations in the HWRF model. Geophys Res Lett 41:9113–9119. https://doi.org/10.1002/2014GL062071

    Article  Google Scholar 

  10. Blanc E, Strobl E (2016) Assessing the impact of typhoons on rice production in the Philippines. J Appl Meteor Clim 55:993–1007. https://doi.org/10.1175/JAMC-D-15-0214.1

    Article  Google Scholar 

  11. Cheung KKW (2004) Large-scale environmental parameters associated with tropical cyclone formations in the western North Pacific. J Clim 17:466–484. https://doi.org/10.1175/1520-0442(2004)017%3c0466:LEPAWT%3e2.0.CO;2

    Article  Google Scholar 

  12. Cinco TA, de Guzman RG, Ortiz AMD, Delfino RFP, Lasco RD, Hilario FD, Juanillo EL, Barba R, Ares ED (2016) Observed trends and impacts of tropical cyclones in the Philippines. Int J Climatol 36:4638–4650. https://doi.org/10.1002/joc.4659

    Article  Google Scholar 

  13. Cruz FT, Narisma GT (2016) WRF simulation of the heavy rainfall over Metropolitan Manila, Philippines during tropical cyclone Ketsana: a sensitivity study. Meteorol Atmos Phys 128:415–428. https://doi.org/10.1007/s00703-015-0425-x

    Article  Google Scholar 

  14. Diro GT, Giorgi F, Fuentes-Franco R, Walsh KJE, Giuliani G, Coppola E (2014) Tropical cyclones in a regional climate change projection with RegCM4 over the CORDEX Central America domain. Clim Change 125:79–94. https://doi.org/10.1007/s10584-014-1155-7

    Article  Google Scholar 

  15. Dvorak VF (1975) Tropical cyclone intensity analysis and forecasting from satellite visible or enhanced infrared imagery. Mon Weather Rev 103:420–430. https://doi.org/10.1175/1520-0493(1975)103%3c0420:TCIAAF%3e2.0.CO;2

    Article  Google Scholar 

  16. Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48(21):2313–2335. https://doi.org/10.1175/1520-0469(1991)048%3c2313:ASFRCC%3e2.0.CO;2

    Article  Google Scholar 

  17. Emanuel KA, Zivkovic-Rothman M (1999) Development and evaluation of a convection scheme for use in climate models. J Atmos Sci 56:1766–1782. https://doi.org/10.1175/1520-0469(1999)056%3c1766:DAEOAC%3e2.0.CO;2

    Article  Google Scholar 

  18. Fritsch JM, Chappell CF (1980) Numerical prediction of convectively driven mesoscale pressure systems Part II Mesoscale model. J Atmos Sci 37:1734–1762. https://doi.org/10.1175/1520-0469(1980)037%3c1722:NPOCDM%3e2.0.CO;2

    Article  Google Scholar 

  19. Fuentes-Franco R, Giorgi F, Coppola E, Zimmermann K (2017) Sensitivity of tropical cyclones to resolution, convection scheme and ocean flux parameterization over Eastern Tropical Pacific and Tropical North Atlantic Oceans in the RegCM4 model. Clim Dyn 49:547–561. https://doi.org/10.1007/s00382-016-3357-3

    Article  Google Scholar 

  20. Gallo F, Daron J, Macadam I, Cinco T, Villafuerte M, Buonomo E, Tucker S, Hein-Griggs D, Jones RG (2019) High-resolution regional climate model projections of future tropical cyclone activity in the Philippines. Int J Climatol 39:1181–1194. https://doi.org/10.1002/joc.5870

    Article  Google Scholar 

  21. Giorgi F, Gutowski WJJ (2015) Regional dynamical downscaling and the CORDEX initiative. Annu Rev Environ Resour 40:467–490. https://doi.org/10.1146/annurev-environ-102014-021217

    Article  Google Scholar 

  22. Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro DT, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Guttler L, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner AL, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29. https://doi.org/10.3354/cr01018

    Article  Google Scholar 

  23. Gray WM (1979) Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans. D. B. Shaw, Ed., Royal Meteorological Society 155–218

  24. Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787. https://doi.org/10.1175/15200493(1993)121%3c0764:PEOAUB%3e2.0.CO;2

    Article  Google Scholar 

  25. Gupta S (2010) Synthesis report on ten ASEAN countries disaster risks assessment: ASEAN Disaster Risk Management Initiative. https://doi.org/10.13140/RG.2.2.32014.36160

  26. Haarsma RJ, Roberts MJ, Vidale PL, Senior CA, Bellucci A, Bao Q, Chang P, Corti S, Fuckar NS, Guemas V, von Hardenberg J, Hazeleger W, Kodama C, Koenigk T, Leung LR, Lu J, Luo J-J, Mao J, Mizielinski MS, Mizuta R, Nobre P, Satoh M, Scoccimarro E, Semmler T, Small J, von Storch J-S (2016) High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci Model Dev 9:4185–4208. https://doi.org/10.5194/gmd-9-4185-2016

    Article  Google Scholar 

  27. Ho C-H, Baik J-J, Kim J-H, Gong D-Y, Sui C-H (2004) Interdecadal changes in summertime typhoon tracks. J Clim 17:1767–1776. https://doi.org/10.1175/1520-0442(2004)017%3c1767:ICISTT%3e2.0.CO;2

    Article  Google Scholar 

  28. Hodges KI (1995) Feature tracking on the unit sphere. Mon Weather Rev 123:3458–3465. https://doi.org/10.1175/1520-0493(1995)123%3c3458:FTOTUS%3e2.0.CO;2

    Article  Google Scholar 

  29. Hodges KI (1996) Spherical nonparametric estimators applied to the UGAMP model integration for AMIP. Mon Weather Rev 124:2914–2932. https://doi.org/10.1175/1520-0493(1996)124%3c2914:SNEATT%3e2.0.CO;2

    Article  Google Scholar 

  30. Hodges KI (1999) Adaptive constraints for feature tracking. Mon Weather Rev 127:1362–1373. https://doi.org/10.1175/1520-0493(1999)127%3c1362:ACFFT%3e2.0.CO;2

    Article  Google Scholar 

  31. Hodges KI, Cobb A, Vidale PL (2017) How well are tropical cyclones represented in reanalysis datasets? J Clim 30:5243–5264. https://doi.org/10.1175/JCLI-D-16-0557.1

    Article  Google Scholar 

  32. Holland GJ (1995) Scale interaction in the western Pacific monsoon. Meteorol Atmos Phys 56:57–79. https://doi.org/10.1007/BF01022521

    Article  Google Scholar 

  33. Holtslag AAM, De Bruijn EIF, Pan H (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575. https://doi.org/10.1175/1520-0493(1990)118%3c1561:AHRAMT%3e2.0.CO;2

    Article  Google Scholar 

  34. Im E-S, Ahn J-B, Remedio AR, Kwon W-T (2008) Sensitivity of the regional climate of East/Southeast Asia to convective parameterizations in the RegCM3 modelling system. Part 1: focus on the Korean Peninsula. Int J Climatol 28:1861–1877. https://doi.org/10.1002/joc.1664

    Article  Google Scholar 

  35. Jin CS, Cha DH, Lee DK, Suh MS, Hong SY, Kang HS, Ho CH (2016) Evaluation of climatological tropical cyclone activity over the western North Pacific in the CORDEX-East Asia multi-RCM simulations. Clim Dyn 47:765–778. https://doi.org/10.1007/s00382-015-2869-6

    Article  Google Scholar 

  36. JMA (2018) Annual report on the activities of the RSMC Tokyo – Typhoon Center 2017. Japan Meteorological Agency, Tokyo

    Google Scholar 

  37. Kain JS, Fritsch JM (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47:2784–2802. https://doi.org/10.1175/1520-0469(1990)047%3c2784:AODEPM%3e2.0.CO;2

    Article  Google Scholar 

  38. Kanada S, Wada A, Nakano M, Kato T (2012) Effect of planetary boundary layer schemes on the development of intense tropical cyclones using a cloud-resolving model. J Geophys Res 117:D03107. https://doi.org/10.1029/2011JD0165822012

    Article  Google Scholar 

  39. Kim D, Jin C-S, Ho C-H, Kim J, Kim J-H (2015) Climatological features of WRF-simulated tropical cyclones over the western North Pacific. Clim Dyn 44:3223–3235. https://doi.org/10.1007/s00382-014-2410-3

    Article  Google Scholar 

  40. Knutson TR, Tuleya RE (2004) Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J Clim 17:3477–3495. https://doi.org/10.1175/1520-0442(2004)017%3c3477:IOCWOS%3e2.0.CO;2

    Article  Google Scholar 

  41. Koba H, Osano S, Hagiwara T, Akashi S, Kikuchi T (1989) Determination of intensity of typhoons passing through the Philippine Islands (in Japanese). J Meteorol Res 41:157–162

    Google Scholar 

  42. Lansigan FP, de los Santos WL, Coladilla JO (2000) Agronomic impacts of climate variability on rice production in the Philippines, Agriculture. Ecosyst Environ 82:129–137. https://doi.org/10.1016/S0167-8809(00)00222-X

    Article  Google Scholar 

  43. Liang J, Wang C, Hodges KI (2017) Evaluation of tropical cyclones over the South China Sea simulated by the 12 km MetUM regional climate model. Q J R Meteorol Soc 143:1641–1656. https://doi.org/10.1002/qj.3035

    Article  Google Scholar 

  44. Manganello JV, Hodges KI, Kinter JL, Cash BA, Marx L, Jung T, Achuthavarier D, Adam JM, Altshuler EL, Huang B (2012) Tropical cyclone climatology in a 10-km global atmospheric GCM: toward weather-resolving climate modeling. J Clim 25:3867–3893. https://doi.org/10.1175/JCLI-D-11-00346.1

    Article  Google Scholar 

  45. Mohandas S, Ashrit R (2014) Sensitivity of different convective parameterization schemes on tropical cyclone prediction using a mesoscale model. Nat Hazards 73:213–235. https://doi.org/10.1007/s11069-013-0824-6

    Article  Google Scholar 

  46. Murakami H (2014) Tropical cyclones in reanalysis data sets. Geophys Res Lett 41:2133–2141. https://doi.org/10.1002/2014GL059519

    Article  Google Scholar 

  47. Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105:29579–29594. https://doi.org/10.3354/cr01082

    Article  Google Scholar 

  48. Pattanayak S, Mohanty UC, Osuri KK (2012) Impact of parameterization of physical processes on simulation of track and intensity of tropical cyclone Nargis (2008) with WRF-NMM Model. Sci World J 2012:1–18. https://doi.org/10.1100/2012/671437

    Article  Google Scholar 

  49. Prater BE, Evans JL (2002) Sensitivity of modeled tropical cyclone track and structure of hurricane Irene (1999) to the convective parameterization scheme. Meteorol Atmos Phys 80:103–115. https://doi.org/10.1007/s007030200018

    Article  Google Scholar 

  50. Rao DVB, Prasad DH (2007) Sensitivity of tropical cyclone intensification to boundary layer and convective processes. Nat Hazards 41:429–445. https://doi.org/10.1007/s11069-006-9052-7

    Article  Google Scholar 

  51. Redmond G, Hodges KI, McSweeney C, Jones R, Hein D (2015) Projected changes in tropical cyclones over Vietnam and the South China Sea using a 25 km regional climate model perturbed physics ensemble. Clim Dyn 45:1983–2000. https://doi.org/10.1007/s00382-014-2450-8

    Article  Google Scholar 

  52. Schenkel BA, Hart RE (2012) An examination of tropical cyclone position, intensity, and intensity lifecycle within atmospheric reanalysis datasets. J Clim 25:3453–3475. https://doi.org/10.1175/2011JCLI4208.1

    Article  Google Scholar 

  53. Shen W, Song J, Liu G, Zhuang Y, Wang Y, Tang J (2019) The effect of convection scheme on tropical cyclones simulations over the CORDEX East Asia domain. Clim Dyn 52:4695–4713. https://doi.org/10.1007/s00382-018-4405-y

    Article  Google Scholar 

  54. Strachan J, Vidale PL, Hodges K, Roberts M, Demory ME (2013) Investigating global tropical cyclone activity with a hierarchy of AGCMs: the role of model resolution. J Clim 26:133–152. https://doi.org/10.1175/JCLI-D-12-00012.1

    Article  Google Scholar 

  55. Sugi M, Murakami H, Yoshimura J (2009) A reduction in global tropical cyclone frequency due to global warming. SOLA 5:164–167. https://doi.org/10.2151/sola.2009-042

    Article  Google Scholar 

  56. Sun Y, Zhong Z, Lu W, Hu Y (2015) Why are tropical cyclone tracks over the western North Pacific sensitive to the cumulus parameterization scheme in regional climate modeling? A case study for Megi (2010). Mon Weather Rev 142:1240–1249. https://doi.org/10.1175/MWR-D-13-00232.1

    Article  Google Scholar 

  57. Tang B, Camargo SJ (2014) Environmental control of tropical cyclones in CMIP5: a ventilation perspective. JAMES 6:115–128. https://doi.org/10.1002/2013MS000294

    Article  Google Scholar 

  58. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800. https://doi.org/10.1175/1520-0493(1989)117%3c1779:ACMFSF%3e2.0.CO;2

    Article  Google Scholar 

  59. Tiedtke M (1996) An extension of cloud-radiation parameterization in the ECMWF model: the representation of subgrid-scale variations of optical depth. Mon Weather Rev 124:745–750. https://doi.org/10.1175/1520-0493(1996)124%3c0745:AEOCRP%3e2.0.CO;2

    Article  Google Scholar 

  60. Villafuerte MQ, Macadam I, Daron J, Katzfey J, Cinco TA, Ares ED, Jones RG (2020) Projected changes in rainfall and temperature over the Philippines from multiple dynamical downscaling models. Int J Climatol 40:1784–1804. https://doi.org/10.1002/joc.6301

    Article  Google Scholar 

  61. Walsh KJE, Fiorino M, Landsea CW, McInnes KL (2007) Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J Clim 20:2307–2314. https://doi.org/10.1175/JCLI4074.1

    Article  Google Scholar 

  62. Wang C, Liang J, Hodges KI (2017) Projections of tropical cyclones affecting Vietnam under climate change: downscaled HadGEM2-ES using PRECIS 2.1. Q J R Meteorol Soc 143:1844–1859. https://doi.org/10.1002/qj.3046

    Article  Google Scholar 

  63. WMO (1966) Regional Association V (South-West Pacific) Abridged Final Report of the Fourth Session. WMO-No. 187. RP.69. World Meteorological Organization. https://library.wmo.int/doc_num.php?explnum_id=7995. Accessed 8 September 2020.

  64. Wu L, Wen Z, Huang R, Wu R (2012) Possible linkage between the monsoon trough variability and the tropical cyclone activity over the western North Pacific. Mon Weather Rev 140:140–150. https://doi.org/10.1175/MWR-D-11-00078.1

    Article  Google Scholar 

  65. Yoshimura J, Sugi M, Noda A (2006) Influence of greenhouse warming on tropical cyclone frequency. J Meteorol Soc Jpn 84:405–428. https://doi.org/10.2151/jmsj.84.405

    Article  Google Scholar 

  66. Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Clim 11:628–2644. https://doi.org/10.1175/1520-0442(1998)011%3c2628:IOBAAF%3e2.0.CO;2

    Article  Google Scholar 

  67. Zhang W, Villarini G, Vecchi GA, Murakami H (2019) Rainfall from tropical cyclones: high-resolution simulations and seasonal forecasts. Clim Dyn 52:5269–5289. https://doi.org/10.1007/s00382-018-4446-2

    Article  Google Scholar 

  68. Zhao M, Held IM, Lin SJ (2012) Some counterintuitive dependencies of tropical cyclone frequency on parameters in a GCM. J Atmos Sci 69:2272–2283. https://doi.org/10.1175/JAS-D-11-0238.1

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Abdus Salam International Centre for Theoretical Physics (ICTP) and the regional climate modeling community for providing the RegCM4 and the necessary files needed to run the model. We appreciate the funding support provided by the Department of Science and Technology—Philippine Council for Industry, Energy, and Emerging Technology Research Development (DOST-PCIEERD) under Project Number 2018-03691, which made this study possible. We are also thankful to Ms. Jennifer Tibay of the Manila Observatory together with the members of the CORDEX-Southeast Asia Philippines team for their comments and suggestions in the earlier version of the manuscript. The computing facility of PAGASA has allowed the model simulations conducted in this study. The insightful comments and recommended revisions provided by the anonymous reviewers are gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcelino Q. Villafuerte II.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Villafuerte, M.Q., Lambrento, J.C.R., Hodges, K.I. et al. Sensitivity of tropical cyclones to convective parameterization schemes in RegCM4. Clim Dyn 56, 1625–1642 (2021). https://doi.org/10.1007/s00382-020-05553-3

Download citation

Keywords

  • Regional climate modeling
  • Sensitivity experiments
  • Tropical cyclones
  • Western North Pacific
  • The Philippines