Skip to main content

Advertisement

Log in

Assessing changes in the atmospheric water budget as drivers for precipitation change over two CORDEX-CORE domains

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study evaluates the projected changes in the atmospheric water budget and precipitation under the RCP8.5 scenario over two CORDEX-CORE domains: South America (SAM) and Europe (EUR). An ensemble of five twenty-first century projections with the Regional Climate Model version 4 (RegCM4) and their driving Global Climate Models (GCMs) are analyzed in terms of the atmospheric water budget terms (precipitation, P; evapotranspiration, ET; and moisture flux convergence, C). Special focus is on four subregions: Amazon (AMZ), La Plata basin (LPB), Mid-Europe (ME) and Eastern Europe (EA). The precipitation change signal in SAM presents a dipole pattern, i.e. drier conditions in AMZ and wetter conditions in LPB. Over the two European regions a seasonality is evident, with an increase of ~ 25% in precipitation for DJF and a decrease of ~ 35% in JJA. The atmospheric water budget drivers of precipitation change vary by region and season. For example, in DJF the main drivers are related to the large-scale moisture flux convergence, while in JJA over the AMZ atmospheric moisture flux convergence plays only a minor role and local processes dominate. For JJA in the GCMs the high values of the residual term do not allow us to assess which mechanisms drive the precipitation change signal over the AMZ and LPB, respectively. Same conclusions are found for the RegCM4 JJA simulations over the LPB and EA. This points to the importance of the spatial resolution of climate simulations and the role of parameterization schemes in climate models. Our work illustrates the usefulness of analyzing regional water budgets for a better understanding of precipitation change patterns around our globe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ambrizzi T, Reboita MS, da Rocha RP, Llopart M (2019) The state of the art and fundamental aspects of regional climate modeling in South America. Ann NY Acad Sci 1436:98–120

    Article  Google Scholar 

  • Ashfaq M, Cavazos T, Reboita MS et al (2020) Robust late twenty-first century shift in the regional monsoons in RegCM-CORDEX simulations. Clim Dyn. https://doi.org/10.1007/s00382-020-05306-2

    Article  Google Scholar 

  • Bentsen BI, Debernard JB, Iversen T, Kirkevåg A, Seland Ø, Drange H, Roelandt C, Seierstad IA, Hoose C, Kristjánsson JE (2012) The Norwegian Earth System Model, NorESM1-M. Part 1: description and basic evaluation. Geosci Model Dev Discuss 5:2843–2931

    Google Scholar 

  • Blázquez J, Solman SA (2019) Relationship between projected changes in precipitation and fronts in the austral winter of the Southern Hemisphere from a suite of CMIP5 models. Clim Dyn 52:5849–5860. https://doi.org/10.1007/s00382-018-4482-y

    Article  Google Scholar 

  • Boé J, Somot S, Corre L, Nabat P (2020) Large discrepancies in summer climate change over Europe as projected by global and regional climate models: causes and consequences. Clim Dyn 54:2981–3002

    Article  Google Scholar 

  • Brêda JPLF, de Paiva RCD, Collischon W et al (2020) Climate change impacts on South American water balance from a continental-scale hydrological model driven by CMIP5 projections. Clim Change. https://doi.org/10.1007/s10584-020-02667-9

    Article  Google Scholar 

  • Brönnimann S, Xoplaki E, Casty C et al (2007) ENSO influence on Europe during the last centuries. Clim Dyn 28:181–197. https://doi.org/10.1007/s00382-006-0175-z

    Article  Google Scholar 

  • Brubaker KL, Entekhabi D, Eagleson PS (1993) Estimation of continental precipitation recycling. J Clim 6(6):1077–1089

    Article  Google Scholar 

  • Brutsaert W (2008) Hydrology: an introduction. 3rd ed. Hydrology: an introduction

  • Chou S, Lyra A, Mourão C et al (2014) Evaluation of the eta simulations nested in three global climate models. Am J Clim Change 3:438–454

    Article  Google Scholar 

  • Christensen JH et al (2007) Regional climate projections. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 847–940

  • Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81:7–30. https://doi.org/10.1007/s10584-006-9210-7

    Article  Google Scholar 

  • Christensen JH, Boberg F, Christensen OB, Lucas-Picher P (2008) On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys Res Lett 35:L20709. https://doi.org/10.1029/2008GL035694

    Article  Google Scholar 

  • Ciarló JM, Coppola E, Fantini A et al (2020) A new spatially distributed added value index for regional climate models: the EURO-CORDEX and the CORDEX-CORE highest resolution ensembles. Clim Dyn. https://doi.org/10.1007/s00382-020-05400-5

    Article  Google Scholar 

  • Ciarlo` JM, Fantini A, Stocchi P (2018) An Overview of EURO-CORDEX Simulations using RegCM4. In: Ninth ICTP Workshop on Theory and Use of Regional Climate Models, http://indico.ictp.it/event/8313/session/0/contribution/6/material/slides/0.pdf

  • Coppola E, Giorgi F (2010) An assessment of temperature and precipitation change projections over Italy from recent global and regional climate model simulations. Int J Climatol 30:11–32

    Article  Google Scholar 

  • da Rocha RP, Reboita MS, Dutra LMM, Llopart MP, Coppola E (2014) Interannual variability associated with ENSO: present and future climate projections of RegCM4 for South America-CORDEX domain. Clim change 125(1):95–109

    Article  Google Scholar 

  • de Jesus EM, da Rocha RP, Reboita MS, Llopart M, Mosso Dutra LM, Remedio ARC (2016) Contribution of cold fronts to seasonal rainfall in simulations over the southern La Plata Basin. Clim Res 68:243–255. https://doi.org/10.3354/cr01358

    Article  Google Scholar 

  • Dezsi Ş, Mîndrescu M, Petrea D, Rai PK, Hamann A, Nistor M-M (2018) High resolution projections of evapotranspiration and water availability for Europe under climate change. Int J Climatol 38:3832–3841. https://doi.org/10.1002/joc.5537

    Article  Google Scholar 

  • Dirmeyer PA, Fang G, Wang Z, Yadav P, Milton AD (2014) Climate change and sectors of the surface water cycle in CMIP5 projections. Hydrol Earth Syst Sci Discuss 11:8537–8569

    Google Scholar 

  • Drumond A, Nieto R, Gimeno L, Ambrizzi T (2008) A Lagrangian identification of major sources of moisture over Central Brazil and La Plata Basin. J Geophys Res Atmos 113 (D14)

  • Furusho-Percot C, Goergen K, Hartick C, Kulkarni K, Keune J, Kollet S (2019) Pan-European groundwater to atmosphere terrestrial systems climatology from a physically consistent simulation. Sci Data 6:320

    Article  Google Scholar 

  • Giorgetta M, Jungclaus J, Reick C et al (2012) CMIP5 simulations of the Max Planck Institute for Meteorology (MPI-M) based on the MPI-ESM-LR model: The rcp85 experiment, served by ESGF. World Data Cent Clim

  • Giorgi F (2019) Thirty years of regional climate modeling: where are we and where are we going next? J Geophys Res Atmos 124:5696–5723. https://doi.org/10.1029/2018JD030094

    Article  Google Scholar 

  • Giorgi F, Coppola E (2007) European climate-change oscillation (ECO): 2007. Geophys Res Lett 34:L21703. https://doi.org/10.1029/2007GL031223

    Article  Google Scholar 

  • Giorgi F, Coppola E (2009) Projections of twenty-first century climate over Europe. Eur Phys J Conf 1:29–46

    Article  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet Change 63:90–14

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183

    Google Scholar 

  • Giorgi F, Coppola E, Solmon F et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

    Article  Google Scholar 

  • Giorgi F, Torma C, Coppola E, Ban N, Schär C, Somot S (2016) Enhanced summer convective rain at Alpine high elevations in response to climate warming. Nat Geosci 9:584–589. https://doi.org/10.1038/ngeo2761

    Article  Google Scholar 

  • Grønås S (1995) The seclusion intensification of the New Year’s Day storm 1992. Tellus A 47:733–746. https://doi.org/10.3402/tellusa.v65i0.19539

    Article  Google Scholar 

  • Gutowski WJ Jr, Giorgi F, Timbal B, Frigon A, Jacob D, Kang H-S, Raghavan K, Lee B, Lennard C, Nikulin G, O’Rourke E, Rixen M, Solman S, Stephenson T, Tangang F (2016) WCRP COordinated Regional Downscaling EXperiment (CORDEX): a diagnostic MIP for CMIP6. Geosci. Model Dev. 9:4087–4095. https://doi.org/10.5194/gmd-9-6914087-2016

    Article  Google Scholar 

  • Held I, Soden B (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686–5699. https://doi.org/10.1175/JCLI3990.1

    Article  Google Scholar 

  • IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, https://doi.org/10.1017/CBO9781107415324

  • Jacob D, Petersen J, Eggert B et al (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14:563–578. https://doi.org/10.1007/s10113-013-0499-2

    Article  Google Scholar 

  • Jacob D, Kotova L, Teichmann C, Sobolowski SP, Vautard R, Donnelly C, Koutroulis AG, Grillakis MG, Tsanis IK, Damm A, Sakalli A, van Vliet MTH (2018) Climate Impacts in Europe Under +1.5∘C Global Warming. Earth’s Future 6:264–285. https://doi.org/10.1002/2017EF000710

    Article  Google Scholar 

  • Jacob D, Teichmann C, Sobolowski S, Katragkou E, Anders I et al (2020) Regional climate downscaling over Europe: perspectives from the EURO-CORDEX community. Reg Env Change. https://doi.org/10.1007/s10113-020-016060-9

    Article  Google Scholar 

  • Jones CD, Hughes JK, Bellouin N et al (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4:543–570

    Article  Google Scholar 

  • Kain JS, Fritsch JM (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47:2784–2802

    Article  Google Scholar 

  • Kotlarski S, Bosshard T, Lüthi D, Pall P, Schär C (2012) Elevation gradients of European climate change in the regional climate model COSMO-CLM. Clim Change 112:189–215

    Article  Google Scholar 

  • Kotlarski S, Keuler K, Christensen OB, Colette A, Déqué M, Gobiet A, Goergen K, Jacob D, Lüthi D, van Meijgaard E, Nikulin G, Schär C, Teichmann C, Vautard R, Warrach-Sagi K, Wulfmeyer V (2014) Regional climate modelling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7:1297–1333. https://doi.org/10.5194/gmd-7-1297-2014

    Article  Google Scholar 

  • Kovats RS, Valentini R, Bouwer LM, Georgopoulou E, Jacob D, Martin E, Rounsevell M, Soussana JF (2014) Europe. In: Climate Change (2014): Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros, V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, M. Chatterjee, K.L. Ebi,Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 1267–1326

  • Llopart M, Coppola E, Giorgi F, da Rocha RP, Cuadra SV (2014) Climate change impact on precipitation for the Amazon and La Plata basins. Clim Change 125(1):111–125

    Article  Google Scholar 

  • Llopart M, da Rocha RP, Reboita M, Cuadra S (2017) Sensitivity of simulated South America climate to the land surface schemes in RegCM4. Clim Dyn 49(11–12):3975–3987

    Article  Google Scholar 

  • Llopart M, Reboita MS, da Rocha RP (2020) Assessment of multi-model climate projections of water resources over South America CORDEX domain. Clim Dyn 54:99–116. https://doi.org/10.1007/s00382-019-04990-z

    Article  Google Scholar 

  • Lu J, Cai M (2009) Seasonality of polar surface warming amplification in climate simulations. Geophys Res Lett 36:1–6

    Article  Google Scholar 

  • Marengo JA, Soares WR, Saulo C, Nicolini M (2004) Climatology of the Low-Level Jet east of the Andes as derived from the NCEP reanalyses. J Clim 17:2261–2280

    Article  Google Scholar 

  • Marengo JA, Chou SC, Kay G et al (2012) Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Clim Dyn 38:1829–1848. https://doi.org/10.1007/s00382-011-1155-5

    Article  Google Scholar 

  • Mariotti L, Coppola E, Sylla MB, Giorgi F, Piani C (2011) Regional climate model simulation of projected 21st century climate change over an all-Africa domain: comparison analysis of nested and driving model results. J Geophys Res 116:D15111

    Article  Google Scholar 

  • Meehl GA, Bony S (2011) Introduction to CMIP5. Clivar Exchanges 16(56):4–5

    Google Scholar 

  • Menéndez CG, Zaninelli PG, Carril AF, Sánchez E (2016) Hydrological cycle, temperature, and land surface atmosphere interaction in the La Plata basin during summer: response to climate change. Clim Res 68(2–3):231–241

    Article  Google Scholar 

  • Montini TL, Jones C, Carvalho LMV (2019) The South American low-level jet: a new climatology, variability, and changes. J Geophys Res Atmos

  • Moss RH, Edmonds JA, Hibbard KA et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747

    Article  Google Scholar 

  • Nascimento M, Herdies DL, Oliveira de Souza D (2016) The South American water balance: the influence of low-level jets. J Clim 29(4):1429–1449

    Article  Google Scholar 

  • Oleson KW, Lawrence DM, Bonan GB, Drewniak B, Huang M, Koven CD, Levis S, Li F, Riley WJ, Subin ZM, Swenson SC, Thornton PE, Bozbiyik A, Fisher R, Kluzek E, Lamarque J-F, Lawrence PJ, Leung LR, Lipscomb W, Muszala S, Ricciuto DM, Sacks W, Sun Y, Tang J, Yang Z-L (2013) Technical Description of version 4.5 of the Community Land Model (CLM), Tech. rep., National Center for Atmospheric Research. https://doi.org/10.5065/D6RR1W7M

  • Palmer MA, Reidy Liermann CA, Nilsson C, Flörke M, Alcamo J, Lake PS, Bond N (2008) Climate change and the world’s river basins: anticipating management options. Front Ecol Environ 6:81–89

    Article  Google Scholar 

  • Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New York, p 1992

    Google Scholar 

  • Reboita MS, Gan MA, da Rocha RP, Ambrizzi T (2010) Regimes de Precipitação na América do Sul: Uma Revisão Bibliográfica. Revista Brasileira de Meteorologia 25(2):185–204

    Article  Google Scholar 

  • Reboita MS, da Rocha RP, Dias CG, Ynoue RY (2014) Climate projections for South America: RegCM3 driven by HadCM3 and ECHAM5. Adv Meteorol 2014:17 ((Article ID 376738))

    Article  Google Scholar 

  • Reboita MS, Fernandez JPR, Pereira Llopart M, Porfirio da Rocha R, Albertani Pampuch L, Cruz FT (2014) Assessment of RegCM4.3 over the CORDEX South America domain: sensitivity analysis for physical parameterization schemes. Clim Res 60:215–234

    Article  Google Scholar 

  • Reboita MS, Reale M, da Rocha RP et al (2020) Future changes in the wintertime cyclonic activity over the CORDEX-CORE southern hemisphere domains in a multi-model approach. Clim Dyn. https://doi.org/10.1007/s00382-020-05317-z

    Article  Google Scholar 

  • Ruscica RC, Menéndez CG, Sörensson AA (2016) Land surface–atmosphere interaction in future South American climate using a multi-model ensemble. Atmos Sci Lett 17:141–147. https://doi.org/10.1002/asl.635

    Article  Google Scholar 

  • Sánchez E, Solman S, Remedio ARC et al (2015) Regional climate modelling in CLARIS-LPB: a concerted approach towards twenty first century projections of regional temperature and precipitation over South America. Clim Dyn 45:2193

    Article  Google Scholar 

  • Sines T, Coppola E, Giorgi F, Sitz L (2018) South America CORDEX project using RegCM. In: Ninth ICTP Workshop on Theory and Use of Regional Climate Models, http://indico.ictp.it/event/8313/session/2/contribution/9/material/slides/0.pdf

  • Solman SA (2016) Systematic temperature and precipitation biases in the CLARIS-LPB ensemble simulations over South America and possible implications for climate projections. Clim Res 68(2–3):117–136

    Article  Google Scholar 

  • Sörensson AA, Menéndez CG (2011) Summer soil-precipitation coupling in South America. Tellus Ser A Dyn Meteorol Oceanogr 63:56–68

    Article  Google Scholar 

  • Sörensson AA, Menéndez CG, Samuelsson P, Willén U, Hansson U (2010) Soil-precipitation feedbacks during the South American Monsoon as simulated by a regional climate model. Clim Change 98:429–447

    Article  Google Scholar 

  • Tiedtke M (1996) An extension of cloud-radiation parameterization in the ECMWF model: the representation of subgrid-scale variations of optical depth. Mon Weather Rev 124:745–750

    Article  Google Scholar 

  • Torma C, Giorgi F (2020) On the evidence of orographical modulation of regional fine scale precipitation change signals: the Carpathians. Atmos Sci Let. https://doi.org/10.1002/asl.967 ((in press))

    Article  Google Scholar 

  • Torma C, Giorgi F, Coppola E (2015) Added value of regional climate modeling over areas characterized by complex terrain-Precipitation over the Alps. J Geophys Res Atmos 120:3957–3972. https://doi.org/10.1002/2014JD022781

    Article  Google Scholar 

  • van Vuuren DP, Edmonds J, Kainuma M et al (2011) The representative concentration pathways: an overview. Clim Change 109(1–2):5. https://doi.org/10.1007/s10584-011-0148-z

    Article  Google Scholar 

  • Zaninelli PG, Menéndez CG, Falco M, López-Franca N, Carril AF (2019) Future hydroclimatological changes in South America based on an ensemble of regional climate models. Clim Dyn 52:819

    Article  Google Scholar 

Download references

Acknowledgements

This paper was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) Finance Code 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brazil (CNPq, 422042/2018-8 and 420262/2018-0). Lincoln Muniz Alves acknowledges support from the Newton Fund through the Met Office Climate Science for Service Partnership Brazil (CSSP Brazil), the DFG/FAPESP (Grant No. IRTG 1740/TRP 2011/50151-0, and 2015/50122-0), and the National Institute of Science and Technology for Climate Change Phase 2 under CNPq Grant (465501/2014-1). All data from SAM-CORDEX and EURO-CORDEX modelling groups used in this work are acknowledged. The data used in this work can be found at the following web site: http://cordexesg.dmi.dk/esgf-web-fe/. We thank the reviewers for their constructive and helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Llopart.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3430 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llopart, M., Domingues, L.M., Torma, C. et al. Assessing changes in the atmospheric water budget as drivers for precipitation change over two CORDEX-CORE domains. Clim Dyn 57, 1615–1628 (2021). https://doi.org/10.1007/s00382-020-05539-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05539-1

Keywords

Navigation