Abstract
The dependence structure of temperature-precipitation compound events is analyzed across Canada using three datasets derived from Canadian Regional Climate Model Large Ensemble simulations, including raw model outputs (CanRCM4-LE) and two sets of multivariate bias-corrected model outputs (Canadian Large Ensembles Adjusted Datasets, CanLEAD-EWEMBI/S14FD). The performance of the ensembles to represent tail dependencies corresponding to warm-wet and warm-dry events is evaluated against NRCANmet observations for 1951–2000 using the copula goodness of fit test. The parameters of the copula model are estimated using a Bayesian framework to characterize the corresponding uncertainties. The non-stationarity of compound extreme climate events is analyzed for 1951–2100 using an ensemble pooling approach and the results are compared with the ones based on the independence assumption. Results show that multivariate bias-corrected climate simulations (i.e. CanLEAD) can better represent the correlated temperature-precipitation extremes compared to raw CanRCM4-LE outputs. The estimated joint return periods reduce significantly when the dependence structure is considered, compared to the independence assumption, for most regions especially in winter and summer. Therefore, analysis of extreme temperature and precipitation in isolation can result in dramatic underestimations of compound warm-wet and warm-dry events. Further, there is strong non-stationarity in the dependence structure of temperature and precipitation under climate change that can play a significant role in future compound extremes.







Similar content being viewed by others
References
Adler RF, Gu G, Wang JJ, Huffman GJ, Curtis S, Bolvin D (2008) Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006). J Geophys Res Atmos 113:D22
AghaKouchak A, Cheng L, Mazdiyasni O, Farahmand A (2014) Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought. Geophys Res Lett 41(24):8847–8852
Akaike H (1974) A new look at the statistical model identification. In: Selected papers of Hirotugu Akaike (pp. 215–222). Springer, New York
Allen M, Ingram W (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232
Bonsal BR, Aider R, Gachon P, Lapp S (2013) An assessment of Canadian prairie drought: past, present, and future. Clim Dyn 41(2):501–516
Bush E, Lemmen DS (eds) (2019) Canada's Changing Climate Report. In: Government of Canada= Gouvernement du Canada
Buttle JM, Allen DM, Caissie D, Davison B, Hayashi M, Peters DL, Pomeroy JW, Simonovic S, St-Hilaire A, Whitfield PH (2016) Flood processes in Canada: regional and special aspects. Can Water Resour J 41(1–2):7–30
Bürger G, Schulla J, Werner AT (2011a) Estimates of future flow, including extremes, of the Columbia River headwaters. Water Resourc Res 47:10
Bürger G, Schulla J, Werner AT (2011b) Estimates of future flow, including extremes, of the Columbia River headwaters. Water Resour Res 47(10):1–18
Cannon AJ (2016) Multivariate bias correction of climate model output: matching marginal distributions and inter-variable dependence structure. J Clim 29(19):7045–7064
Cannon AJ (2018) Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables. Clim Dyn 50(1–2):31–49
Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828
Deser C, Lehner F, Rodgers KB, Ault T, Delworth TL, DiNezio PN, Fiore A, Frankignoul C, Fyfe JC, Horton DE, Kay JE, Knutti R, Lovenduski NS, Marotzke J, McKinnon KA, Minobe S, Randerson J, Screen JA, Simpson IR, Ting M (2020) Publisher Correction: Insights from Earth system model initial-condition large ensembles and future prospects. Nature Clim Change 10(8):791–791
Dutra E, Balsamo G, Calvet JC, Minvielle M, Eisner S, Fink G, Pessenteiner S, Orth R, Burke S, van Dijk AIJM, Polcher J (2015) Report on the current state-of-the-art Water Resources Reanalysis. Tech. Rep. D.5.1, EartH2Observe. [Available at http://earth2observe.eu/files/Public%20Deliverables/D5.1_Report%20on%20the%20WRR1%20tier1.pdf
Eum HI, Dibike Y, Prowse T, Bonsal B (2014) Inter-comparison of high-resolution gridded climate data sets and their implication on hydrological model simulation over the Athabasca Watershed. Can Hydrol Proces 28(14):4250–4271
Eum HI, Gachon P, Laprise R, Ouarda T (2012) Evaluation of regional climate model simulations versus gridded observed and regional reanalysis products using a combined weighting scheme. Clim Dyn 38(7–8):1433–1457
Favre AC, El-Adlouni S, Perreault L, Thiémonge N, Bobée B (2004) Multivariate hydrological frequency analysis using copulas. Water Resour Res 40:1
Frei C, Schöll R, Fukutome S, Schmidli J, Vidale PL (2006) Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. J Geophys Res Atmos 111:D6
Frieler K, Lange S, Piontek F, Reyer CPO, Schewe J, Warszawski L, Zhao F, Chini L, Denvil S, Emanuel K, Geiger T, Halladay K, Hurtt G, Mengel M, Murakami D, Ostberg S, Stevanovic M, Suzuki T, Volkholz J, Burke E, Ciais P, Ebi K, Eddy TD, Elliott J, Galbraith E, Gosling SN, Hattermann F, Hickler T, Hinkel J, Hof C, Huber V, Krysanova V, Marcé R, Müller Schmied H, Mouratiadou I, Pierson D, Tittensor DP, Vautard R, van Vliet M, Biber M, Betts R, Bodirsky B, Deryng D, Frolking S, Jones C, Lotze HK, Lotze-Campen H, Popp A, Sahapal R, Thonicke K, Tian H, Yamagata Y (2017) Assessing the impacts of 1.5°C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP-2b). Geoscientific Model Dev 10:4321–4345. https://www.geosci-model-dev.net/10/4321/2017/
Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7(4):457–472
Genest C, Favre A-C (2007) Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask. J Hydrol Eng 12(4):347–368
Genest C, MacKay J (1986) The joy of copulas: bivariate distributions with uniform marginals. Am Stat 40(4):280–283
Genest C, Rivest LP (1993) Statistical inference procedures for bivariate Archimedean copulas. J Am Stat Assoc 88(423):1034–1043
Genest C, Ghoudi K, Rivest LP (1995) A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82(3):543–552
Graham RM, Cohen L, Petty AA, Boisvert LN, Rinke A, Hudson SR, Nicolaus M, Granskog MA (2017) Increasing frequency and duration of Arctic winter warming events. Geophys Res Lett 44:6974–6983. https://doi.org/10.1002/2017GL073395
Hansen J, Sergej L (1987) Global trends of measured surface air temperature. J Geophys Res Atmos 92(11):13345–13372
Hao Z, AghaKouchak A (2013) Multivariate standardized drought index: a parametric multi-index model. Adv Water Resour 57:12–18
Hao Z, Singh VP (2016) Review of dependence modeling in hydrology and water resources. Prog Phys Geogr 40(4):549–578
Harris I, Jones PD, Osborn TJ, Lister DH (2014) CRU TS3. 22: Climatic Research Unit (CRU) Time-Series (TS) Version 3.22 of High Resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2013). In: NCAS British Atmospheric Data Centre, 24th September, 2016.
Hoffman MD, Gelman A (2014) The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J Mach Learn Res 15(1):1593–1623
Iizumi T, Takikawa H, Hirabayashi Y, Hanasaki N, Nishimori M (2017) Contributions of different bias-correction methods and reference meteorological forcing data sets to uncertainty in projected temperature and precipitation extremes. J Geophys Res Atmos 122(15):7800–7819
Innocenti S, Mailhot A, Leduc M, Cannon AJ, Frigon A (2019) Projected changes in the probability distributions, seasonality, and spatiotemporal scaling of daily and sub-daily extreme precipitation simulated by a 50-member ensemble over northeastern North America. J Geophys Res Atmos 124(19):10427–10449. https://doi.org/10.1029/2019JD031210
Isaac GA, Stuart RA (1992) Temperature–precipitation relationships for canadian stations. J Clim 5(8):822–830
Islam SU, Déry SJ (2017) Evaluating uncertainties in modelling the snow hydrology of the Fraser River Basin, British Columbia, Canada. Hydrol Earth Syst Sci 21:3
Jalili-Pirani F, Najafi MR (2020) Recent trends in individual and multivariate compound flood drivers in Canada’s coasts. Water Resour Res 56(8):e2020WR027785
Joe H (2014) Dependence modeling with copulas. Chapman and Hall/CRC, New York
Kim Y, Rocheta E, Evans JP et al (2020) Impact of bias correction of regional climate model boundary conditions on the simulation of precipitation extremes. Clim Dyn. https://doi.org/10.1007/s00382-020-05462-5
Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn Ser 93(1):5–48
Lange S (2016) EartH2Observe, WFDEI and ERA-Interim data Merged and Bias-corrected for ISIMIP (EWEMBI). In: GFZ Data Services. https://doi.org/10.5880/pik.2016.004
Lenderink G, Van Meijgaard E (2008) Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat Geosci 1(8):511–514
Mahfouf JF, Brasnett B, Gagnon S (2007) A Canadian precipitation analysis (CaPA) project: description and preliminary results. Atmos Ocean 45(1):1–17
Mahony CR, Cannon AJ (2018) Wetter summers can intensify departures from natural variability in a warming climate. Nat Commun 9:783. https://doi.org/10.1038/s41467-018-03132-z
Mandal S, Srivastav RK, Simonovic SP (2016) Use of beta regression for statistical downscaling of precipitation in the Campbell River basin, British Columbia, Canada. J Hydrol 538:49–62
Miguez-Macho G, Stenchikov GL, Robock A (2004) Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J Geophys Res Atmos 109:13
Najafi MR, Zhang Y, Martyn N (2020) A flood risk assessment framework for interdependent infrastructure systems in coastal environments. Sustain Cities Soc 2020:102516
Najafi MR, Zwiers FW, Gillett NP (2017) Attribution of observed streamflow changes in key British Columbia drainage basins. Geophys Res Lett 44(21):11–012
Neal RM (2011) MCMC using Hamiltonian dynamics. Handb Markov Chain Monte Carlo 11:2
Nelsen RB (2007) An introduction to copulas. Springer Science & Business Media, Berlin
New M, Todd M, Hulme M, Jones P (2001) Precipitation measurements and trends in the twentieth century. Int J Climatol A J R Meteorol Soc 21(15):1889–1922
Niang I, Ruppel OC, Abdrabo MA, Essel A, Lennard C, Padgham J, Urquhart P (2014) Africa. In: Climate Change 2014: impacts, adaptation, and vulnerability. part b: regional aspects. contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. [Barros, V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L.White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 1199–1265
Piani C, Haerter JO (2012) Two dimensional bias correction of temperature and precipitation copulas in climate models. Geophys Res Lett 39:20
R Core Team (2019). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Rajczak J, Schär C (2017) Projections of future precipitation extremes over Europe: a multimodel assessment of climate simulations. J Geophys Res Atmos 122(20):10–773
Rana A, Moradkhani H, Qin Y (2017) Understanding the joint behavior of temperature and precipitation for climate change impact studies. Theoret Appl Climatol 129(1–2):321–339
Rocheta E, Evans JP, Sharma A (2014) Assessing atmospheric bias correction for dynamical consistency using potential vorticity. Environ Res Lett 9(12):124010
Rocheta E, Evans JP, Sharma A (2017) Can bias correction of regional climate model lateral boundary conditions improve low-frequency rainfall variability? J Clim 30:9785–9806. https://doi.org/10.1175/JCLI-D-16-0654.1
Sadegh M, Ragno E, AghaKouchak A (2017) Multivariate Copula Analysis Toolbox (MvCAT): describing dependence and underlying uncertainty using a Bayesian framework. Water Resour Res 53(6):5166–5183
Salvadori G (2004) Bivariate return periods via 2-copulas. Stat Methodol 1(1–2):129–144
Salvadori G, De Michele C (2007) On the use of copulas in hydrology: theory and practice. J Hydrol Eng 12(4):369–380
Schneider U, Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Ziese M (2016) GPCC full data reanalysis version 7.0: monthly land-surface precipitation from rain gauges built on GTS based and historic data. In: Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory.
Scinocca JF, Kharin VV, Jiao Y, Qian MW, Lazare M, Solheim L, Flato GM, Biner S, Desgagne M, Dugas B (2016) Coordinated global and regional climate modeling. J Clim 29(1):17–35
Shrestha RR, Dibike YB, Prowse TD (2012) Modelling of climate-induced hydrologic changes in the Lake Winnipeg watershed. J Great Lakes Res 38:83–94
Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013a) Climate extremes indices in the CMIP5 multi-model ensemble. Part 1: model evaluation in the present climate. J Geophys Res. https://doi.org/10.1002/jgrd.50203
Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013b) Climate extremes indices in the CMIP5 multi-model ensemble. Part 2: future projections. J Geophys Res. https://doi.org/10.1002/jgrd.50188
Singh H, Najafi MR (2020) Evaluation of gridded climate datasets over Canada using univariate and bivariate approaches: Implications for hydrological modelling. J Hydrol 584:124673
Singh H, Pirani FJ, Najafi MR (2020) Characterizing the temperature and precipitation covariability over Canada. Theoret Appl Climatol 139(3):1543–1558
Sklar M (1959) Fonctions de repartition an dimensions et leurs marges. Publ inst statist univ Paris 8:229–231
Stackhouse PW Jr, Gupta SK, Cox SJ, Mikovitz C, Zhang T, Hinkelman LM (2011) The ASA/GEWEX surface radiation budget release 3.0: 24.5-year dataset. Gewex News 21:10–12
Stan Development Team (2018) RStan: the R interface to Stan. R package version 2.17.3. http://mc-stan.org
von Storch H, Langenberg H, Feser F (2000) A spectral nudging technique for dynamical downscaling purposes. Mon Weather Rev 128(10):3664–3673
Tebaldi C, Sansó B (2009) Joint projections of temperature and precipitation change from multiple climate models: a hierarchical Bayesian approach. J R Stat Soc A (Stat Soc) 172(1):83–106
Trenberth KE, Shea DJ (2005) Relationships between precipitation and surface temperature. Geophys Res Lett 32:14
Vincent LA, van Wijngaarden WA, Hopkinson R (2007) Surface temperature and humidity trends in Canada for 1953–2005. J Clim 20(20):5100–5113
Vrac M, Friederichs P (2015) Multivariate—intervariable, spatial, and temporal—bias correction. J Clim 28(1):218–237
Wahl T, Jain S, Bender J, Meyers SD, Luther ME (2015) Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nature Clim Change 5(12):1093–1097
Wang W, Wells MT (2000) Model selection and semiparametric inference for bivariate failure-time data. J American Stat Associ 95(449):62–72
Weedon GP, Balsamo G, Bellouin N, Gomes S, Best MJ, Viterbo P (2014) The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour Res 50(9):7505–7514
Werner AT, Schnorbus MA, Shrestha RR, Cannon AJ, Zwiers FW, Dayon G, Anslow F (2019) A long-term, temporally consistent, gridded daily meteorological dataset for northwestern North America. Sci Data 6:180299
Whan K, Zwiers F (2016) Evaluation of extreme rainfall and temperature over North America in CanRCM4 and CRCM5. Clim Dyn 46(11–12):3821–3843
Wiken EB (1986) Terrestrial ecozones of Canada, Ecological Land Classification Series No. 19. Environment Canada, Ottawa
Wong JS, Razavi S, Bonsal BR, Wheater HS, Asong ZE (2017) Inter-comparison of daily precipitation products for large-scale hydro-climatic applications over Canada. Hydrol Earth Syst Sci 21(4):2163–2185
Wu X, Hao Z, Hao F, Zhang X (2019) Variations of compound precipitation and temperature extremes in China during 1961–2014. Sci Total Environ 1(663):731–737
Zhang Y, Najafi MR (2020) Probabilistic numerical modelling of compound flooding caused by tropical storm matthew over a data-scarce coastal environment. Water Resour Res. https://doi.org/10.1029/2020WR028565
Zhang LSVP, Singh VP (2006) Bivariate flood frequency analysis using the copula method. J Hydrol Eng 11(2):150–164
Zhang X, Vincent LA, Hogg WD, Niitsoo A (2000) Temperature and precipitation trends in Canada during the 20th century. Atmos Ocean 38(3):395–429
Zhao W, Khalil MAK (1993) The relationship between precipitation and temperature over the contiguous United States. J Clim 6(6):1232–1236
Zscheischler J, Seneviratne SI (2017) Dependence of drivers affects risks associated with compound events. Sci Adv 3(6):e1700263
Zscheischler J, Westra S, Van Den Hurk BJ, Seneviratne SI, Ward PJ, Pitman A, AghaKouchak A, Bresch DN, Leonard M, Wahl T, Zhang X (2018) Future climate risk from compound events. Nature Clim Change 8(6):469–477
Acknowledgements
This project was funded by an NSERC CRD grant.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Singh, H., Najafi, M.R. & Cannon, A.J. Characterizing non-stationary compound extreme events in a changing climate based on large-ensemble climate simulations. Clim Dyn 56, 1389–1405 (2021). https://doi.org/10.1007/s00382-020-05538-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00382-020-05538-2


