Skip to main content

Advertisement

Log in

Characterizing non-stationary compound extreme events in a changing climate based on large-ensemble climate simulations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The dependence structure of temperature-precipitation compound events is analyzed across Canada using three datasets derived from Canadian Regional Climate Model Large Ensemble simulations, including raw model outputs (CanRCM4-LE) and two sets of multivariate bias-corrected model outputs (Canadian Large Ensembles Adjusted Datasets, CanLEAD-EWEMBI/S14FD). The performance of the ensembles to represent tail dependencies corresponding to warm-wet and warm-dry events is evaluated against NRCANmet observations for 1951–2000 using the copula goodness of fit test. The parameters of the copula model are estimated using a Bayesian framework to characterize the corresponding uncertainties. The non-stationarity of compound extreme climate events is analyzed for 1951–2100 using an ensemble pooling approach and the results are compared with the ones based on the independence assumption. Results show that multivariate bias-corrected climate simulations (i.e. CanLEAD) can better represent the correlated temperature-precipitation extremes compared to raw CanRCM4-LE outputs. The estimated joint return periods reduce significantly when the dependence structure is considered, compared to the independence assumption, for most regions especially in winter and summer. Therefore, analysis of extreme temperature and precipitation in isolation can result in dramatic underestimations of compound warm-wet and warm-dry events. Further, there is strong non-stationarity in the dependence structure of temperature and precipitation under climate change that can play a significant role in future compound extremes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adler RF, Gu G, Wang JJ, Huffman GJ, Curtis S, Bolvin D (2008) Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006). J Geophys Res Atmos 113:D22

    Google Scholar 

  • AghaKouchak A, Cheng L, Mazdiyasni O, Farahmand A (2014) Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought. Geophys Res Lett 41(24):8847–8852

    Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. In: Selected papers of Hirotugu Akaike (pp. 215–222). Springer, New York

  • Allen M, Ingram W (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232

    Google Scholar 

  • Bonsal BR, Aider R, Gachon P, Lapp S (2013) An assessment of Canadian prairie drought: past, present, and future. Clim Dyn 41(2):501–516

    Google Scholar 

  • Bush E, Lemmen DS (eds) (2019) Canada's Changing Climate Report. In: Government of Canada= Gouvernement du Canada

  • Buttle JM, Allen DM, Caissie D, Davison B, Hayashi M, Peters DL, Pomeroy JW, Simonovic S, St-Hilaire A, Whitfield PH (2016) Flood processes in Canada: regional and special aspects. Can Water Resour J 41(1–2):7–30

    Google Scholar 

  • Bürger G, Schulla J, Werner AT (2011a) Estimates of future flow, including extremes, of the Columbia River headwaters. Water Resourc Res 47:10

    Google Scholar 

  • Bürger G, Schulla J, Werner AT (2011b) Estimates of future flow, including extremes, of the Columbia River headwaters. Water Resour Res 47(10):1–18

    Google Scholar 

  • Cannon AJ (2016) Multivariate bias correction of climate model output: matching marginal distributions and inter-variable dependence structure. J Clim 29(19):7045–7064

    Google Scholar 

  • Cannon AJ (2018) Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables. Clim Dyn 50(1–2):31–49

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Deser C, Lehner F, Rodgers KB, Ault T, Delworth TL, DiNezio PN, Fiore A, Frankignoul C, Fyfe JC, Horton DE, Kay JE, Knutti R, Lovenduski NS, Marotzke J, McKinnon KA, Minobe S, Randerson J, Screen JA, Simpson IR, Ting M (2020) Publisher Correction: Insights from Earth system model initial-condition large ensembles and future prospects. Nature Clim Change 10(8):791–791

    Google Scholar 

  • Dutra E, Balsamo G, Calvet JC, Minvielle M, Eisner S, Fink G, Pessenteiner S, Orth R, Burke S, van Dijk AIJM, Polcher J (2015) Report on the current state-of-the-art Water Resources Reanalysis. Tech. Rep. D.5.1, EartH2Observe. [Available at http://earth2observe.eu/files/Public%20Deliverables/D5.1_Report%20on%20the%20WRR1%20tier1.pdf

  • Eum HI, Dibike Y, Prowse T, Bonsal B (2014) Inter-comparison of high-resolution gridded climate data sets and their implication on hydrological model simulation over the Athabasca Watershed. Can Hydrol Proces 28(14):4250–4271

    Google Scholar 

  • Eum HI, Gachon P, Laprise R, Ouarda T (2012) Evaluation of regional climate model simulations versus gridded observed and regional reanalysis products using a combined weighting scheme. Clim Dyn 38(7–8):1433–1457

    Google Scholar 

  • Favre AC, El-Adlouni S, Perreault L, Thiémonge N, Bobée B (2004) Multivariate hydrological frequency analysis using copulas. Water Resour Res 40:1

    Google Scholar 

  • Frei C, Schöll R, Fukutome S, Schmidli J, Vidale PL (2006) Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. J Geophys Res Atmos 111:D6

    Google Scholar 

  • Frieler K, Lange S, Piontek F, Reyer CPO, Schewe J, Warszawski L, Zhao F, Chini L, Denvil S, Emanuel K, Geiger T, Halladay K, Hurtt G, Mengel M, Murakami D, Ostberg S, Stevanovic M, Suzuki T, Volkholz J, Burke E, Ciais P, Ebi K, Eddy TD, Elliott J, Galbraith E, Gosling SN, Hattermann F, Hickler T, Hinkel J, Hof C, Huber V, Krysanova V, Marcé R, Müller Schmied H, Mouratiadou I, Pierson D, Tittensor DP, Vautard R, van Vliet M, Biber M, Betts R, Bodirsky B, Deryng D, Frolking S, Jones C, Lotze HK, Lotze-Campen H, Popp A, Sahapal R, Thonicke K, Tian H, Yamagata Y (2017) Assessing the impacts of 1.5°C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP-2b). Geoscientific Model Dev 10:4321–4345. https://www.geosci-model-dev.net/10/4321/2017/

  • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7(4):457–472

    Google Scholar 

  • Genest C, Favre A-C (2007) Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask. J Hydrol Eng 12(4):347–368

    Google Scholar 

  • Genest C, MacKay J (1986) The joy of copulas: bivariate distributions with uniform marginals. Am Stat 40(4):280–283

    Google Scholar 

  • Genest C, Rivest LP (1993) Statistical inference procedures for bivariate Archimedean copulas. J Am Stat Assoc 88(423):1034–1043

    Google Scholar 

  • Genest C, Ghoudi K, Rivest LP (1995) A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82(3):543–552

    Google Scholar 

  • Graham RM, Cohen L, Petty AA, Boisvert LN, Rinke A, Hudson SR, Nicolaus M, Granskog MA (2017) Increasing frequency and duration of Arctic winter warming events. Geophys Res Lett 44:6974–6983. https://doi.org/10.1002/2017GL073395

    Article  Google Scholar 

  • Hansen J, Sergej L (1987) Global trends of measured surface air temperature. J Geophys Res Atmos 92(11):13345–13372

    Google Scholar 

  • Hao Z, AghaKouchak A (2013) Multivariate standardized drought index: a parametric multi-index model. Adv Water Resour 57:12–18

    Google Scholar 

  • Hao Z, Singh VP (2016) Review of dependence modeling in hydrology and water resources. Prog Phys Geogr 40(4):549–578

    Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) CRU TS3. 22: Climatic Research Unit (CRU) Time-Series (TS) Version 3.22 of High Resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2013). In: NCAS British Atmospheric Data Centre, 24th September, 2016.

  • Hoffman MD, Gelman A (2014) The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J Mach Learn Res 15(1):1593–1623

    Google Scholar 

  • Iizumi T, Takikawa H, Hirabayashi Y, Hanasaki N, Nishimori M (2017) Contributions of different bias-correction methods and reference meteorological forcing data sets to uncertainty in projected temperature and precipitation extremes. J Geophys Res Atmos 122(15):7800–7819

    Google Scholar 

  • Innocenti S, Mailhot A, Leduc M, Cannon AJ, Frigon A (2019) Projected changes in the probability distributions, seasonality, and spatiotemporal scaling of daily and sub-daily extreme precipitation simulated by a 50-member ensemble over northeastern North America. J Geophys Res Atmos 124(19):10427–10449. https://doi.org/10.1029/2019JD031210

    Article  Google Scholar 

  • Isaac GA, Stuart RA (1992) Temperature–precipitation relationships for canadian stations. J Clim 5(8):822–830

    Google Scholar 

  • Islam SU, Déry SJ (2017) Evaluating uncertainties in modelling the snow hydrology of the Fraser River Basin, British Columbia, Canada. Hydrol Earth Syst Sci 21:3

    Google Scholar 

  • Jalili-Pirani F, Najafi MR (2020) Recent trends in individual and multivariate compound flood drivers in Canada’s coasts. Water Resour Res 56(8):e2020WR027785

    Google Scholar 

  • Joe H (2014) Dependence modeling with copulas. Chapman and Hall/CRC, New York

    Google Scholar 

  • Kim Y, Rocheta E, Evans JP et al (2020) Impact of bias correction of regional climate model boundary conditions on the simulation of precipitation extremes. Clim Dyn. https://doi.org/10.1007/s00382-020-05462-5

    Article  Google Scholar 

  • Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn Ser 93(1):5–48

    Google Scholar 

  • Lange S (2016) EartH2Observe, WFDEI and ERA-Interim data Merged and Bias-corrected for ISIMIP (EWEMBI). In: GFZ Data Services. https://doi.org/10.5880/pik.2016.004

  • Lenderink G, Van Meijgaard E (2008) Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat Geosci 1(8):511–514

    Google Scholar 

  • Mahfouf JF, Brasnett B, Gagnon S (2007) A Canadian precipitation analysis (CaPA) project: description and preliminary results. Atmos Ocean 45(1):1–17

    Google Scholar 

  • Mahony CR, Cannon AJ (2018) Wetter summers can intensify departures from natural variability in a warming climate. Nat Commun 9:783. https://doi.org/10.1038/s41467-018-03132-z

    Article  Google Scholar 

  • Mandal S, Srivastav RK, Simonovic SP (2016) Use of beta regression for statistical downscaling of precipitation in the Campbell River basin, British Columbia, Canada. J Hydrol 538:49–62

    Google Scholar 

  • Miguez-Macho G, Stenchikov GL, Robock A (2004) Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J Geophys Res Atmos 109:13

    Google Scholar 

  • Najafi MR, Zhang Y, Martyn N (2020) A flood risk assessment framework for interdependent infrastructure systems in coastal environments. Sustain Cities Soc 2020:102516

    Google Scholar 

  • Najafi MR, Zwiers FW, Gillett NP (2017) Attribution of observed streamflow changes in key British Columbia drainage basins. Geophys Res Lett 44(21):11–012

    Google Scholar 

  • Neal RM (2011) MCMC using Hamiltonian dynamics. Handb Markov Chain Monte Carlo 11:2

    Google Scholar 

  • Nelsen RB (2007) An introduction to copulas. Springer Science & Business Media, Berlin

    Google Scholar 

  • New M, Todd M, Hulme M, Jones P (2001) Precipitation measurements and trends in the twentieth century. Int J Climatol A J R Meteorol Soc 21(15):1889–1922

    Google Scholar 

  • Niang I, Ruppel OC, Abdrabo MA, Essel A, Lennard C, Padgham J, Urquhart P (2014) Africa. In: Climate Change 2014: impacts, adaptation, and vulnerability. part b: regional aspects. contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. [Barros, V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L.White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 1199–1265

  • Piani C, Haerter JO (2012) Two dimensional bias correction of temperature and precipitation copulas in climate models. Geophys Res Lett 39:20

    Google Scholar 

  • R Core Team (2019). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Rajczak J, Schär C (2017) Projections of future precipitation extremes over Europe: a multimodel assessment of climate simulations. J Geophys Res Atmos 122(20):10–773

    Google Scholar 

  • Rana A, Moradkhani H, Qin Y (2017) Understanding the joint behavior of temperature and precipitation for climate change impact studies. Theoret Appl Climatol 129(1–2):321–339

    Google Scholar 

  • Rocheta E, Evans JP, Sharma A (2014) Assessing atmospheric bias correction for dynamical consistency using potential vorticity. Environ Res Lett 9(12):124010

    Google Scholar 

  • Rocheta E, Evans JP, Sharma A (2017) Can bias correction of regional climate model lateral boundary conditions improve low-frequency rainfall variability? J Clim 30:9785–9806. https://doi.org/10.1175/JCLI-D-16-0654.1

    Article  Google Scholar 

  • Sadegh M, Ragno E, AghaKouchak A (2017) Multivariate Copula Analysis Toolbox (MvCAT): describing dependence and underlying uncertainty using a Bayesian framework. Water Resour Res 53(6):5166–5183

    Google Scholar 

  • Salvadori G (2004) Bivariate return periods via 2-copulas. Stat Methodol 1(1–2):129–144

    Google Scholar 

  • Salvadori G, De Michele C (2007) On the use of copulas in hydrology: theory and practice. J Hydrol Eng 12(4):369–380

    Google Scholar 

  • Schneider U, Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Ziese M (2016) GPCC full data reanalysis version 7.0: monthly land-surface precipitation from rain gauges built on GTS based and historic data. In: Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory.

  • Scinocca JF, Kharin VV, Jiao Y, Qian MW, Lazare M, Solheim L, Flato GM, Biner S, Desgagne M, Dugas B (2016) Coordinated global and regional climate modeling. J Clim 29(1):17–35

    Google Scholar 

  • Shrestha RR, Dibike YB, Prowse TD (2012) Modelling of climate-induced hydrologic changes in the Lake Winnipeg watershed. J Great Lakes Res 38:83–94

    Google Scholar 

  • Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013a) Climate extremes indices in the CMIP5 multi-model ensemble. Part 1: model evaluation in the present climate. J Geophys Res. https://doi.org/10.1002/jgrd.50203

    Article  Google Scholar 

  • Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013b) Climate extremes indices in the CMIP5 multi-model ensemble. Part 2: future projections. J Geophys Res. https://doi.org/10.1002/jgrd.50188

    Article  Google Scholar 

  • Singh H, Najafi MR (2020) Evaluation of gridded climate datasets over Canada using univariate and bivariate approaches: Implications for hydrological modelling. J Hydrol 584:124673

    Google Scholar 

  • Singh H, Pirani FJ, Najafi MR (2020) Characterizing the temperature and precipitation covariability over Canada. Theoret Appl Climatol 139(3):1543–1558

    Google Scholar 

  • Sklar M (1959) Fonctions de repartition an dimensions et leurs marges. Publ inst statist univ Paris 8:229–231

    Google Scholar 

  • Stackhouse PW Jr, Gupta SK, Cox SJ, Mikovitz C, Zhang T, Hinkelman LM (2011) The ASA/GEWEX surface radiation budget release 3.0: 24.5-year dataset. Gewex News 21:10–12

    Google Scholar 

  • Stan Development Team (2018) RStan: the R interface to Stan. R package version 2.17.3. http://mc-stan.org

  • von Storch H, Langenberg H, Feser F (2000) A spectral nudging technique for dynamical downscaling purposes. Mon Weather Rev 128(10):3664–3673

    Google Scholar 

  • Tebaldi C, Sansó B (2009) Joint projections of temperature and precipitation change from multiple climate models: a hierarchical Bayesian approach. J R Stat Soc A (Stat Soc) 172(1):83–106

    Google Scholar 

  • Trenberth KE, Shea DJ (2005) Relationships between precipitation and surface temperature. Geophys Res Lett 32:14

    Google Scholar 

  • Vincent LA, van Wijngaarden WA, Hopkinson R (2007) Surface temperature and humidity trends in Canada for 1953–2005. J Clim 20(20):5100–5113

    Google Scholar 

  • Vrac M, Friederichs P (2015) Multivariate—intervariable, spatial, and temporal—bias correction. J Clim 28(1):218–237

    Google Scholar 

  • Wahl T, Jain S, Bender J, Meyers SD, Luther ME (2015) Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nature Clim Change 5(12):1093–1097

    Google Scholar 

  • Wang W, Wells MT (2000) Model selection and semiparametric inference for bivariate failure-time data. J American Stat Associ 95(449):62–72

    Google Scholar 

  • Weedon GP, Balsamo G, Bellouin N, Gomes S, Best MJ, Viterbo P (2014) The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour Res 50(9):7505–7514

    Google Scholar 

  • Werner AT, Schnorbus MA, Shrestha RR, Cannon AJ, Zwiers FW, Dayon G, Anslow F (2019) A long-term, temporally consistent, gridded daily meteorological dataset for northwestern North America. Sci Data 6:180299

    Google Scholar 

  • Whan K, Zwiers F (2016) Evaluation of extreme rainfall and temperature over North America in CanRCM4 and CRCM5. Clim Dyn 46(11–12):3821–3843

    Google Scholar 

  • Wiken EB (1986) Terrestrial ecozones of Canada, Ecological Land Classification Series No. 19. Environment Canada, Ottawa

  • Wong JS, Razavi S, Bonsal BR, Wheater HS, Asong ZE (2017) Inter-comparison of daily precipitation products for large-scale hydro-climatic applications over Canada. Hydrol Earth Syst Sci 21(4):2163–2185

    Google Scholar 

  • Wu X, Hao Z, Hao F, Zhang X (2019) Variations of compound precipitation and temperature extremes in China during 1961–2014. Sci Total Environ 1(663):731–737

    Google Scholar 

  • Zhang Y, Najafi MR (2020) Probabilistic numerical modelling of compound flooding caused by tropical storm matthew over a data-scarce coastal environment. Water Resour Res. https://doi.org/10.1029/2020WR028565

    Article  Google Scholar 

  • Zhang LSVP, Singh VP (2006) Bivariate flood frequency analysis using the copula method. J Hydrol Eng 11(2):150–164

    Google Scholar 

  • Zhang X, Vincent LA, Hogg WD, Niitsoo A (2000) Temperature and precipitation trends in Canada during the 20th century. Atmos Ocean 38(3):395–429

    Google Scholar 

  • Zhao W, Khalil MAK (1993) The relationship between precipitation and temperature over the contiguous United States. J Clim 6(6):1232–1236

    Google Scholar 

  • Zscheischler J, Seneviratne SI (2017) Dependence of drivers affects risks associated with compound events. Sci Adv 3(6):e1700263

    Google Scholar 

  • Zscheischler J, Westra S, Van Den Hurk BJ, Seneviratne SI, Ward PJ, Pitman A, AghaKouchak A, Bresch DN, Leonard M, Wahl T, Zhang X (2018) Future climate risk from compound events. Nature Clim Change 8(6):469–477

    Google Scholar 

Download references

Acknowledgements

This project was funded by an NSERC CRD grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Najafi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2281 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Najafi, M.R. & Cannon, A.J. Characterizing non-stationary compound extreme events in a changing climate based on large-ensemble climate simulations. Clim Dyn 56, 1389–1405 (2021). https://doi.org/10.1007/s00382-020-05538-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05538-2

Keywords

Navigation