Skip to main content
Log in

Impacts of the Atlantic warm pool on North American precipitation and global sea surface temperature in a coupled general circulation model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The responses of North American precipitation to the Atlantic warm pool (AWP) are investigated by using observational data and the NCAR Community Earth System Model. We show that the responses are controlled by different physical mechanisms in different seasons. In the warm season, a large AWP reduces the North Atlantic subtropical high, consistent with Gill’s physics. The corresponding influence over North America is northerly wind anomalies in the lower atmosphere, which leads to a precipitation suppression in the central United States. However, in the cold season the AWP’s impact on North American precipitation is operated via the teleconnection of cold SST anomalies in the tropical Pacific which are induced by the AWP. A large AWP enhances the local Hadley circulation that moves across the equator to the tropical southeastern Pacific in the boreal summer. This inter-hemispheric process strengthens the atmospheric sinking and then increases the South Pacific subtropical high, resulting in the enhancement of the surface easterly trade wind and thus cold SST anomalies in tropical southeastern Pacific. The wind-evaporation-SST and Bjerknes feedbacks further lead tropical central Pacific SST to a La Niña-like pattern, which is consistent with that the significant and negative correlation between ENSO and the AWP is observed after the 1990s when the AWP leads by 6–9 months. The AWP-induced La Niña-like SST anomalies in the tropical central Pacific further prompts a negative phase of the Pacific North American teleconnection, resulting in decreased precipitation over the southern United States; and vice versa. In addition to the AWP-induced central Pacific-type of ENSO events, the paper also shows the influences of the AWP on SSTs in the North Pacific and Indian Oceans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

Download references

Acknowledgements

We thank three reviewers’ comments and suggestions which help us improve the manuscript. This study is supported by the National Key R&D Program of China (2019YFA0606701), the National Natural Science Foundation of China (41731173, 41925024, 42006033), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB42000000 and XDA20060502), Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0306), Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences (ISEE2018PY06), and the Leading Talents of Guangdong Province Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunzai Wang or Sheng Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Chen, S., Song, Z. et al. Impacts of the Atlantic warm pool on North American precipitation and global sea surface temperature in a coupled general circulation model. Clim Dyn 56, 1163–1181 (2021). https://doi.org/10.1007/s00382-020-05527-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05527-5

Navigation