Abstract
Past versions of global surface temperature (ST) datasets have been shown to have underestimated the recent warming trend over 1998–2012. This study uses a newly updated global land surface air temperature and a land and marine surface temperature dataset, referred to as China global land surface air temperature (C-LSAT) and China merged surface temperature (CMST), to estimate trends in the global mean ST (combining land surface air temperature and sea surface temperature anomalies) with the data uncertainties being taken into account. Comparing with existing datasets, the statistical significance of the global mean ST warming trend during the past century (1900–2017) remains unchanged, while the recent warming trend during the “hiatus” period (1998–012) increases obviously, which is statistically significant at 95% level when fitting uncertainty is considered as in previous studies (including IPCC AR5) and is significant at 90% level when both fitting and data uncertainties are considered. Our analysis shows that the global mean ST warming trends in this short period become closer among the newly developed global observational data (CMST), remotely sensed/Buoy network infilled datasets, and reanalysis data. Based on the new datasets, the warming trends of global mean land SAT as derived from C-LSAT 2.0 for the period of 1979–2019, 1951–2019, 1900–2019 and 1850–2019 were estimated to be 0.296, 0.219, 0.119 and 0.081 °C/decade, respectively. The warming trends of global mean ST as derived from CMST for the periods of 1998–2019, 1979–2019, 1951–2019 and 1900–2019 were estimated to be 0.195, 0.173, 0.145 and 0.091 °C/decade, respectively.
This is a preview of subscription content, access via your institution.









References
Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106. https://doi.org/10.1029/2005JD006548
Cahill N, Rahmstorf S, Parnell A (2015) Change points of global temperature. Environ Res Lett 10:084002. https://doi.org/10.1088/1748-9326/10/8/084002
Cowtan K, Way RG (2014) Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q J R Meterol Soc 140:1935–1944. doi:https://doi.org/10.1002/qj.2297
Cowtan K, Jacobs P, Thorne P et al (2018) Statistical analysis of coverage error in simple global temperature estimators. Dyn Stat Clim Syst. https://doi.org/10.1093/climsys/dzy003
Diggle PJ, Liang KY, Zeger SL (1994) Analysis of longitudinal data. Oxford University Press, Oxford
Freeman E, Woodruff SD, Worley SJ et al (2017) ICOADS Release 3.0: a major update to the historical marine climate record. Int J Climatol 37(5):2211–2232. https://doi.org/10.1002/joc.4775
Folland CK et al (2001) Observed climate variability and change. In: Houghton JT (ed) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, pp 99–181
Fyfe JC, Meehl GA, England MH, Mann ME, Santer BD, Flato GM, Hawkins E, Gillett NP, Xie S-P, Kosaka Y, Swart NC (2016) Making sense of the early-2000s warming slowdown. Nat Clim Change 6:224–228. doi:https://doi.org/10.1038/nclimate2938
Hansen J, Ruedy R, Glascoe J et al (1999) GISS analysis of surface temperature change. J Geophys Res 104:30997–31022
Hansen J, Ruedy R, Sato M et al (2001) A closer look at United States and global surface temperature change. J Geophys Res 106:23947–23963
Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina Elizade M (2006) Global temperature change. Proc Natl Acad Sci USA 103(14):288–293. https://doi.org/10.1073/pnas.0606291103
Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48(4):1–29. https://doi.org/10.1029/2010RG000345 (RG404)
Hartmann DL (2013) Ch. 2. Climate change. In: Stocker TF et al (eds) The physical science basis. Cambridge University Press, Cambridge
Hawkins ED, Jones PD (2013) Notes and correspondence on increasing global temperatures: 75 years after Callendar. Q J R Meteorol Soc 139:1961–1963
Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3803
Hirahara S, Ishii M, Fukuda Y (2014) Centennial-scale sea surface temperature analysis and its uncertainty. J Clim 27:57–75. doi:https://doi.org/10.1175/JCLI-D-12-00837.1
Huang B, Menne MJ, Boyer T, Freeman E et al (2019) Uncertainty estimates for sea surface temperature and land surface air temperature in NOAAGlobalTemp version 5. J Clim. https://doi.org/10.1175/CLI-D-19-0395.1 (in press)
Huang B, Thorne PW, Smith TM, Liu W, Lawrimore J, Banzon VF, Zhang H-M, Peterson TC, Menne M (2016) Further exploring and quantifying uncertainties for Extended Reconstructed Sea Surface Temperature (ERSST) version 4 (v4). J Clim 29:3119–3142. DOI:https://doi.org/10.1175/JCLI-D-15-0430.1
Huang B, Angel W, Boyer T, Cheng L, Chepurin G, Freeman E, Liu C, Zhang H-M (2018) Evaluating SST analyses with independent ocean profile observations. J Clim 31:5015–5030. https://doi.org/10.1175/jcli-d-17-0824.1
Huang B, Thorne P, Banzon V, Boyer T, Chepurin G, Lawrimore J, Menne M, Smith T, Vose R, Zhang H (2017) Extended reconstructed sea surface temperature version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J Clim 30:8179–8205. https://doi.org/10.1175/JCLI-D-16-0836.1
Huang J, Zhang X, Zhang Q et al (2017) Recently amplified Arctic warming has contributed to a continual global warming trend. Nat Clim Change 7:875–879. https://doi.org/10.1038/s41558-017-0009-5
IPCC (2007) Climate change (2007) The physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL. (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 996
IPCC (2013a) Climate change (2013) The physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 1535
IPCC (2013b) Summary for policymakers. In: Qin TFD, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.) Climate Change (2013) The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Stocker. Cambridge University Press, Cambridge
Ishii M, Shouji A, Sugimoto S, Matsumoto T (2005) Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int J Climatol 25:865–879. https://doi.org/10.1002/joc.1169
Jones PD, David L, Osborn TJ, Harpham C, Salmon M, Morice CP (2012) Hemispheric and large-scale land-surface air temperature variations: an extensive revision and an update to 2010. J Geophys Res Atmos. https://doi.org/10.1029/2011JD017139
Jones PD, Wigley TML (2010) Estimation of global temperature trends: what’s important and what isn’t. Clim Change 100(1):59–69
Jones PD, Moberg A (2003) Hemispheric and large-scale surface air temperature variations: an extensive revision and an update to 2001. J Clim 16:206–223
Karl TR, Arguez A, Huang B, Lawrimore JH, McMahon JR, Menne MJ, Peterson TC, Vose RS, Zhang HM (2015) Possible artifacts of data biases in the recent global surface warming hiatus. Science 348:1469–1472. doi:https://doi.org/10.1126/science.aaa5632
Kennedy JJ, Rayner NA, Smith RO, Parker DE, Saunby M (2011a) Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J Geophys Res Atmos 116:D14104. https://doi.org/10.1029/2010JD015220
Kennedy JJ, Rayner NA, Smith RO, Saunby M, Parker DE (2011b) Reassessing biases and other uncertainties in sea surface temperature observations since 1850, part 1: Measurement and sampling uncertainties. J Geophys Res 116:D14103. doi:https://doi.org/10.1029/2010JD015218
Kennedy JJ (2014) A review of uncertainty in in situ measurements and data sets of sea surface temperature. Rev Geophys 52:1–32. doi:https://doi.org/10.1002/2013RG000434
Kennedy JJ, Rayner NA, Atkinson CP, Killick RE (2019) An ensemble data set of sea-surface temperature change from 1850: the Met Office Hadley Centre HadSST4000 data set. J Geophys Res Atmos. https://doi.org/10.1029/2018JD029867
Kent EC, Kennedy JJ, Smith TM, Hirahara S, Huang B, Kaplan A, Parker DE, Atkinson CP, Berry DI, Carella G, Fukuda Y, Ishii M, Jones PD, Lindgren F, Merchant CJ, Morak-Bozzo S, Rayner NA, Venema V, Yasui S, Zhang H-M (2017) A call for new approaches to quantifying biases in observations of sea-surface temperature. Bull Am Meteor Soc 98:1601–1616. doi:https://doi.org/10.1175/BAMS-D-15-00251.1
Lawrimore JH, Menne MJ, Gleason BE, Williams CN, Wuertz DB, Vose RS, Rennie J (2011) An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. J Geophys Res Atmos. https://doi.org/10.1029/2011jd016187
Lenssen N, Schmidt G, Hansen J, Menne M, Persin A, Ruedy R, Zyss D (2019) Improvements in the GISTEMP uncertainty model. J Geophys Res Atmos 124(12):6307–6326. https://doi.org/10.1029/2018JD029522
Lewandowsky S, Cowtan. K, Risbey J et al (2018) The ‘pause’ in global warming in historical context: (II). Comparing models to observations. Envion Res Lett 13:123007. https://doi.org/10.1088/1748-9326/aaf372
Lewandowsky S, Risbey J, Oreskes N (2016) The “pause” in global warming: Turning a routine fluctuation into a problem for science. Bull Am Meteorol Soc 97:723–733. https://doi.org/10.1175/BAMS-D-14-00106.1
Li Q, Dong W, Li W, Gao X, Jones P, Kennedy J, Parker D (2010) Assessment of the uncertainties in temperature change in China during the last century. Chin Sci Bull 55:1974–1982. doi:https://doi.org/10.1007/s11434-010-3209-1
Li Q, Zhang L, Xu W et al (2017) Comparisons of time series of annual mean surface air temperature for China since the 1900s: Observation, Model simulation and extended reanalysis. Bull Am Meteorol Soc 98(4):699–711. https://doi.org/10.1175/BAMS-D-16-0092.1
Li Q, Yan Y et al (2019) Comments on “Comparing the current and early 20th century warm periods in China” by Soon W., R. Connolly, M. Connolly et al. Earth Sci Rev 198:102886. https://doi.org/10.1016/j.earscirev.2019.102886
Li Q, Dong W (2020) Continental scale surface air temperature variations: an experience derived from China region practice. Earth Sci Rev 200:998. https://doi.org/10.1016/j.earscirev.2019.102998
Li Q, Sun W, Huang B, Dong W, Wang X, Zhai P, Jones P (2020) Consistency of global warming trends strengthened since 1880s, Science Bulletin, accepted
Lugina KM, Groisman PY, Vinnikov KY et al (2006) Monthly surface air temperature time series area-averaged over the 30-degree latitudinal belts of the globe, 1881-2005. In: A compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA. https://doi.org/10.3334/CDIAC/cli.003
Medhaug I, Stolpe M, Fischer E et al (2017) Reconciling controversies about the ‘global warming hiatus. Nature 545:41–47. https://doi.org/10.1038/nature22315
Morice CP, Kennedy JJ, Rayner NA, Jones PD (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 dataset. J Geophys Res 117:D08101. doi:https://doi.org/10.1029/2011JD017187
Menne JM, Williams CN, Gleason BE et al (2018) The Global Historical Climatology Network Monthly Temperature Dataset, Version 4, J Climate, 31 (24): 9835–9854. https://doi.org/10.1175/JCLI-D-18-0094.1
Muller RA, Curry J, Groom D, Jacobsen R, Perlmutter S, Rohde R, Rosenfeld A, Wickham C, Wurtele J (2013) Decadal variations in the global atmospheric land temperatures. J Geophys Res Atmos. https://doi.org/10.1002/jgrd.50458
Peterson TC, Vose RS (1997) An overview of the Global Historical Climatology Network temperature database. Bull Am Meteorol Soc 78:2837–2849
Peterson TC, Willett KM, Thorne PC (2011) Observed changes in surface atmospheric energy over land. Geophys Res Lett 38:L16707. doi:https://doi.org/10.1029/2011GL048442
Rahmstorf S, Foster G, Cahill N (2017) Global temperature evolution: recent trends and some pitfalls. Environ Res Lett 12:054001. https://doi.org/10.1088/1748-9326/aa6825
Risbey J, Lewandowsky S, Cowtan K., et al (2018) A fluctuation in surface temperature in historical context: reassessment and retrospective on the evidence. Envion Res Lett 13:123008. https://doi.org/10.1088/1748-9326/aaf342
Simmons AJ, Berrisford P, Dee DP, Hersbach H, Hirahara S, Thépaut JN (2017) A reassessment of temperature variations and trends from global reanalyses and monthly surface climatological datasets. Q J R Meteorol Soc 143:101–119. doi:https://doi.org/10.1002/qj.2949
Simmons AJ, Willett KM, Jones PD, Thorne PW, Dee DP (2010) Low-frequency variations in surface atmospheric humidity, temperature and precipitation: Inferences from reanalyses and monthly gridded observational datasets. J Geophys Res 115:D01110. doi:https://doi.org/10.1029/2009JD012442
Stott PA, Thorne PW (2010) How best to log local temperatures? Nature 465:158–159
Smith T, Reynolds RW, Livezey RE, Stokes DC (1996) Reconstruction of historical sea surface temperatures using empirical orthogonal functions. J Climate 9:1403–1420. doi:https://doi.org/10.1175/1520-0442(1996)009<1403:ROHSST>2.0.CO;2
Smith TM, Reynolds RW (2005) A global merged land-air-sea surface temperature reconstruction based on historical observations (1880–1997). J Clim 18:2021–2036. doi:https://doi.org/10.1175/JCLI3362.1
Smith T, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Climate 21:2283–2296. doi:https://doi.org/10.1175/2007JCLI2100.1
Titchner HA, Rayner NA (2014) The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J Geophys Res Atmos 119: 2864–2889.https://doi.org/10.1002/2013JD020316
Trenberth KT, Stepaniak P, Worley S (2002) Evolution of El Niño-Southern Oscillation and global atmospheric surface temperatures. J Geophys Res 107(D8): 4065. https://doi.org/10.1029/2000JD000298
Vose RS et al (2012) NOAA’s merged land-ocean surface temperature analysis. Bull Am Meteor Soc. https://doi.org/10.1175/BAMS-D-11-00241.1
Xu W, Li Q, Jones PD, Wang XL et al (2018) A new integrated and homogenized global monthly land surface air temperature dataset for the period since 1900. Clim Dyn 50:2513–2536. https://doi.org/10.1007/s00382-017-3755-1
Yun X, Huang B, Cheng J, Xu W, Qiao S, Li Q (2019) A new merge of global surface temperature datasets since the start of the 20th Century. Earth Syst Sci Data 11:1629–1643. https://doi.org/10.5194/essd-11-1629-2019
Zhai P, Guo YuR, Li Y, Ren Q, Wang X, Xu Y, Liu W, Ding Y Y (2016) The strong El Niño in 2015/2016 and its dominant impacts on global and China’s climate. J Meteorol Res 74(3):309–321. doi:https://doi.org/10.11676/qxxb2016.049
Zhang H-M, Lawrimore JH, Huang B, Menne MJ, Yin X, Sánchez-Lugo A, Gleason BE, Vose R, Arndt D, Rennie JJ, Williams CN, (2019) Updated temperature data give a sharper view of climate trends. EOS. https://doi.org/10.1029/2019EO128229
Acknowledgements
This study is supported by the Natural Science Foundation of China (Grant: 41975105), the National Key R&D Program of China (Grant: 2018YFC1507705; 2017YFC1502301). And thanks Dr. Geert van Oldenborgh from Royal Netherlands Meteorological Institute (KNMI) for providing several global SAT/ST datasets on Climate Explorer website (http://climexp.knmi.nl/) for calculating the temperature change trends in this paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Li, Q., Sun, W., Yun, X. et al. An updated evaluation of the global mean land surface air temperature and surface temperature trends based on CLSAT and CMST. Clim Dyn 56, 635–650 (2021). https://doi.org/10.1007/s00382-020-05502-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00382-020-05502-0
Keywords
- Global mean surface temperature (GMST)
- Global land surface air temperature (GLSAT)
- Sea surface temperature (SST)
- Trends
- Dataset