Skip to main content

Advertisement

Log in

The South Atlantic sub-tropical dipole mode since the last deglaciation and changes in rainfall

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The South Atlantic subtropical dipole (SASD) has an impact on South American rainfall particular during its negative phase when continental precipitation in the northern part of the continent is enhanced. Relying on a series of single forcing transient simulations since the last deglaciation, we differentiate the relative role of meltwater, orbital, ice-sheets and greenhouse gases on the variability of rainfall in South America and links to the SASD. Results indicate that the meltwater forcing is the predominant driver of SASD variability. Wavelet analysis shows that most of the energy for the SASD at lower frequencies (\(\sim \)5 kyr) comes from the meltwater discharge at cold events such as the Heinrich-1 cooling \(\sim \) 17 ka and the Younger-Dryas \(\sim \) 12.9 ka. Large rainfall changes in Northeastern Brazil can be attributed to changes in the South Atlantic sea surface temperature latitudinal gradient and South Atlantic Northward heat transport driven by the meltwater discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Addison PS (2018) Introduction to redundancy rules: the continuous wavelet transform comes of age

  • Baker PA, Fritz SC (2015) Nature and causes of quaternary climate variation of tropical south america. Quatern Sci Rev 124:31–47

    Google Scholar 

  • Berger A (1978) Long-term variations of daily insolation and quaternary climatic changes. J Atmos Sci 35(12):2362–2367

    Google Scholar 

  • Brady EC, Otto-Bliesner BL (2011) The role of meltwater-induced subsurface ocean warming in regulating the atlantic meridional overturning in glacial climate simulations. Clim Dyn 37(7–8):1517–1532

    Google Scholar 

  • Buizert C, Keisling B, Box J, He F, Carlson A, Sinclair G, DeConto R (2018) Greenland-wide seasonal temperatures during the last deglaciation. Geophys Res Lett 45(4):1905–1914

    Google Scholar 

  • Cheng H, Fleitmann D, Edwards RL, Wang X, Cruz FW, Auler AS, Mangini A, Wang Y, Kong X, Burns SJ, et al (2009) Timing and structure of the 8.2 kyr bp event inferred from \(\delta \)18o records of stalagmites from China, Oman, and Brazil. Geology 37(11):1007–1010

  • Clark PU, Shakun JD, Baker PA, Bartlein PJ, Brewer S, Brook E, Carlson AE, Cheng H, Kaufman DS, Liu Z et al (2012) Global climate evolution during the last deglaciation. Proc Natl Acad Sci 109(19):E1134–E1142

    Google Scholar 

  • Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Briegleb BP, Bitz CM, Lin SJ, Zhang M (2006) The formulation and atmospheric simulation of the community atmosphere model version 3 (cam3). J Clim 19(11):2144–2161

    Google Scholar 

  • Deser C, Alexander MA, Xie SP, Phillips AS (2010) Sea surface temperature variability: Patterns and mechanisms. Ann Rev Mar Sci 2:115–143

    Google Scholar 

  • Green B, Marshall J, Donohoe A (2017) Twentieth century correlations between extratropical sst variability and itcz shifts. Geophys Res Lett 44(17):9039–9047

    Google Scholar 

  • Haskins RK, Oliver KI, Jackson LC, Wood RA, Drijfhout SS (2019) Temperature domination of amoc weakening due to freshwater hosing in two gcms. Clim Dyn pp 1–14

  • Hastenrath S (2012) Exploring the climate problems of Brazil’s nordeste: a review. Clim Chang 112(2):243–251

    Google Scholar 

  • Haug GH, Hughen KA, Sigman DM, Peterson LC, Röhl U (2001) Southward migration of the intertropical convergence zone through the holocene. Science 293(5533):1304–1308

    Google Scholar 

  • He F (2011) Simulating transient climate evolution of the last deglaciation with CCSM 3. PhD Thesis, University of Wisconsin

  • He F, Shakun JD, Clark PU, Carlson AE, Liu Z, Otto-Bliesner BL, Kutzbach JE (2013) Northern hemisphere forcing of southern hemisphere climate during the last deglaciation. Nature 494(7435):81–85

    Google Scholar 

  • Joos F, Spahni R (2008) Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc Natl Acad Sci 105(5):1425–1430

    Google Scholar 

  • Liu W, Liu Z, Cheng J, Hu H (2015) On the stability of the Atlantic meridional overturning circulation during the last deglaciation. Clim Dyn 44(5–6):1257–1275

    Google Scholar 

  • Liu Z, Otto-Bliesner B, He F, Brady E, Tomas R, Clark P, Carlson A, Lynch-Stieglitz J, Curry W, Brook E et al (2009) Transient simulation of last deglaciation with a new mechanism for bølling-allerød warming. Science 325(5938):310–314

    Google Scholar 

  • Liu Z, Carlson AE, He F, Brady EC, Otto-Bliesner BL, Briegleb BP, Wehrenberg M, Clark PU, Wu S, Cheng J et al (2012) Younger dryas cooling and the Greenland climate response to co2. Proc Natl Acad Sci 109(28):11101–11104

    Google Scholar 

  • Marson JM, Wainer I, Mata MM, Liu Z (2014) The impacts of deglacial meltwater forcing on the South Atlantic ocean deep circulation since the last glacial maximum. Clim Past 10(5):

  • Marson JM, Mysak LA, Mata MM, Wainer I (2016) Evolution of the deep Atlantic water masses since the last glacial maximum based on a transient run of ncar-ccsm3. Clim Dyn 47(3–4):865–877

    Google Scholar 

  • Mayewski PA, Rohling EE, Stager JC, Karlén W, Maasch KA, Meeker LD, Meyerson EA, Gasse F, van Kreveld S, Holmgren K et al (2004) Holocene climate variability. Quaternary Res 62(3):243–255

    Google Scholar 

  • McGee D, Donohoe A, Marshall J, Ferreira D (2014) Changes in itcz location and cross-equatorial heat transport at the last glacial maximum, heinrich stadial 1, and the mid-holocene. Earth Planet Sci Lett 390:69–79

    Google Scholar 

  • McManus JF, Francois R, Gherardi JM, Keigwin LD, Brown-Leger S (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428(6985):834–837

    Google Scholar 

  • Moreno-Chamarro E, Marshall J, Delworth T (2020) Linking itcz migrations to the amoc and North Atlantic/pacific sst decadal variability. J Clim 33(3):893–905

    Google Scholar 

  • Morioka Y, Tozuka T, Yamagata T (2011) On the growth and decay of the subtropical dipole mode in the south atlantic. J Clim 24(21):5538–5554

    Google Scholar 

  • Morioka Y, Tozuka T, Masson S, Terray P, Luo JJ, Yamagata T (2012) Subtropical dipole modes simulated in a coupled general circulation model. J Clim 25(12):4029–4047

    Google Scholar 

  • Moura AD, Shukla J (1981) On the dynamics of droughts in Northeast Brazil: observations, theory and numerical experiments with a general circulation model. J Atmos Sci 38(12):2653–2675

    Google Scholar 

  • Mulitza S, Chiessi CM, Schefuß E, Lippold J, Wichmann D, Antz B, Mackensen A, Paul A, Prange M, Rehfeld K et al (2017) Synchronous and proportional deglacial changes in Atlantic meridional overturning and Northeast Brazilian precipitation. Paleoceanography 32(6):622–633

    Google Scholar 

  • Nnamchi HC, Li J, Anyadike RN (2011) Does a dipole mode really exist in the South Atlantic ocean? J Geophys Res Atmos 116(D15)

  • O’brien S, Mayewski PA, Meeker LD, Meese DA, Twickler MS, Whitlow S (1995) Complexity of Holocene climate as reconstructed from a Greenland ice core. Science 270(5244):1962–1964

  • Otto-Bliesner BL, Brady EC, Clauzet G, Tomas R, Levis S, Kothavala Z (2006) Last glacial maximum and Holocene climate in ccsm3. J Clim 19(11):2526–2544

    Google Scholar 

  • Peltier W (2004) Global glacial isostasy and the surface of the ice-age earth: the ice-5g (vm2) model and grace. Annu Rev Earth Planet Sci 32:111–149

    Google Scholar 

  • Portilho-Ramos R, Chiessi C, Zhang Y, Mulitza S, Kucera M, Siccha M, Prange M, Paul A (2017) Coupling of equatorial Atlantic surface stratification to glacial shifts in the tropical rainbelt. Sci Rep 7(1):1–8

    Google Scholar 

  • Ruddiman W, Fuller D, Kutzbach J, Tzedakis P, Kaplan J, Ellis E, Vavrus S, Roberts C, Fyfe R, He F et al (2016) Late Holocene climate: natural or anthropogenic? Rev Geophys 54(1):93–118

    Google Scholar 

  • Seo J, Kang SM, Frierson DM (2014) Sensitivity of intertropical convergence zone movement to the latitudinal position of thermal forcing. J Clim 27(8):3035–3042

    Google Scholar 

  • Servain J (1991) Simple climatic indices for the tropical Atlantic ocean and some applications. J Geophys Res Oceans 96

  • Stouffer RJ, Yin J, Gregory J, Dixon K, Spelman M, Hurlin W, Weaver A, Eby M, Flato G, Hasumi H et al (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19(8):1365–1387

    Google Scholar 

  • Stríkis NM, Chiessi CM, Cruz FW, Vuille M, Cheng H, de Souza Barreto EA, Mollenhauer G, Kasten S, Karmann I, Edwards RL et al (2015) Timing and structure of mega-Sacz events during Heinrich stadial 1. Geophys Res Lett 42(13):5477–5484A

    Google Scholar 

  • Stríkis NM, Cruz FW, Barreto EA, Naughton F, Vuille M, Cheng H, Voelker AH, Zhang H, Karmann I, Edwards RL et al (2018) South American monsoon response to iceberg discharge in the north Atlantic. Proc Natl Acad Sci 115(15):3788–3793

    Google Scholar 

  • Taschetto AS, Wainer I et al (2008) The impact of the subtropical South Atlantic sst on South American precipitation. Ann Geophys Atmos Hydrospheres Space Sci 26(11):3457

    Google Scholar 

  • Tierney JE, Pausata FS, de Menocal PB (2017) Rainfall regimes of the green sahara. Sci Adv 3(1):e1601,503

  • Torrence C, Compo G (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78

    Google Scholar 

  • Wainer I, Soares J (1997) North Northeast Brazil rainfall and its decadal-scale relationship to wind stress and sea surface temperature. Geophys Res Lett 24(3):277–280

    Google Scholar 

  • Wainer I, Venegas SA (2002) South Atlantic multidecadal variability in the climate system model. J Clim 15(12):1408–1420

    Google Scholar 

  • Wainer I, Prado L, Khodri M, Otto-Bliesner B (2014) Reconstruction of the South Atlantic subtropical dipole index for the past 12,000 years from surface temperature proxy. Sci Rep 4:5291

    Google Scholar 

  • Walker M, Head MJ, Lowe J, Berkelhammer M, BjÖrck S, Cheng H, Cwynar LC, Fisher D, Gkinis V, Long A et al (2019) Subdividing the Holocene series/epoch: formalization of stages/ages and subseries/subepochs, and designation of gssps and auxiliary stratotypes. J Quat Sci 34(3):173–186

    Google Scholar 

  • Wanner H, Solomina O, Grosjean M, Ritz SP, Jetel M (2011) Structure and origin of Holocene cold events. Quat Sci Rev 30(21–22):3109–3123

    Google Scholar 

  • Weaver AJ, Saenko OA, Clark PU, Mitrovica JX (2003) Meltwater pulse 1a from Antarctica as a trigger of the Bølling–Allerød warm interval. Science 299(5613):1709–1713

    Google Scholar 

  • Wen X, Liu Z, Wang S, Cheng J, Zhu J (2016) Correlation and anti-correlation of the East Asian summer and winter monsoons during the last 21,000 years. Nat Commun 7(1):1–7

    Google Scholar 

  • Yeager SG, Shields CA, Large WG, Hack JJ (2006) The low-resolution ccsm3. J Clim 19(11):2545–2566

    Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Grants FAPESP: 2018/14789-9; CNPq: 301726/2013-2, 405869/20134; CNPq.MCT.INCT.CRIOSFERA 573720/20088 and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Brasil (CAPES) Finance Code 001 CAPES 88887.314387/2019-00, 88887.495715/2020-00. CNPq/MCT_INCT-CRIOSFERA 465680/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilana Wainer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wainer, I., Prado, L.F., Khodri, M. et al. The South Atlantic sub-tropical dipole mode since the last deglaciation and changes in rainfall. Clim Dyn 56, 109–122 (2021). https://doi.org/10.1007/s00382-020-05468-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05468-z

Keywords

Navigation