Adloff F, Jordà G, Somot S, Sevault F, Arsouze T, Meyssignac B, Li L, Planton S (2018) Improving sea-level simulation in Mediterranean regional climate models. Clim Dyn 51:1167–1178. https://doi.org/10.1007/s00382-017-3842-3
Article
Google Scholar
Androulidakis YS, Kombiadou KD, Makris CV, Baltikas VN, Krestenitis YN (2015) Storm surges in the Mediterranean Sea: variability and trends under future climatic conditions. Dyn Atmos Oceans 71:56–82. https://doi.org/10.1016/j.dynatmoce.2015.06.001
Article
Google Scholar
Argueso D, Evans JP, Fita L, Bormann KJ (2014) Temperature response to future urbanization and climate change. Clim Dyn 42:2183–2199. https://doi.org/10.1007/s00382-013-1789-6
Article
Google Scholar
Bajić A, Glasnović D (1999) Impact of Adritic Bora on traffic. In: Proceedings from the 4th European conference on applied meteorology, Norrkoping, SMHI
Bajo M, Međugorac I, Umgiesser G, Orlić M (2019) Storm surge and seiche modelling in the Adriatic Sea and the impact of data assimilation. Q J R Meteorol Soc 145:2070–2084. https://doi.org/10.1002/qj.3544
Article
Google Scholar
Balsamo G, Albergel C, Beljaars A, Boussetta S, Brun E, Cloke H, Dee D, Dutra E, Muñoz-Sabater J, Pappenberger F, de Rosnay P, Stockdale T, Vitart F (2015) ERA-Interim/Land: a global land surface reanalysis data set. Hydrol Earth Syst Sci 19:389–407. https://doi.org/10.5194/hess-19-389-2015
Article
Google Scholar
Ban N, Schmidli J, Schär C (2014) Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J Geophys Res Atmos 119:7889–7907. https://doi.org/10.1002/2014JD021478
Article
Google Scholar
Ban N, Schmidli J, Schär C (2015) Heavy precipitation in a changing climate: does short-term summer precipitation increase faster? Geophys Res Lett 42:1165–1172. https://doi.org/10.1002/2014GL062588
Article
Google Scholar
Bellafiore D, Bucchignani E, Gualdi S, Carniel S, Djurdjević V, Umgiesser G (2012) Assessment of meteorological climate models as inputs for coastal studies. Ocean Dyn 62:555–568. https://doi.org/10.1007/s10236-011-0508-2
Article
Google Scholar
Belušić D, Klaić ZB (2006) Mesoscale dynamics, structure and predictability of a severe Adriatic bora case. Meteorol Z 15:157–168
Article
Google Scholar
Belušić A, Prtenjak MT, Güttler I, Ban N, Leutwyler D, Schär C (2017) Near-surface wind variability over the broader Adriatic region: insights from an ensemble of regional climate models. Clim Dyn 50:4455–4480. https://doi.org/10.1007/s00382-017-3885-5
Article
Google Scholar
Belušić Vozila A, Güttler I, Ahrens B, Obermann-Hellhund A, Telišman Prtenjak M (2019) Wind over the Adriatic region in CORDEX climate change scenarios. J Geophys Res Atmos 124:110–130. https://doi.org/10.1029/2018JD028552
Article
Google Scholar
Bencivenga M, Nardone G, Ruggiero F, Calore D (2012) The Italian Data Buoy Network (RON). Adv Fluid Mech IX, WIT Trans Eng Sci 74:321–332
Google Scholar
Benetazzo A, Fedele F, Carniel S, Ricchi A, Bucchignani E, Sclavo M (2012) Wave climate of the Adriatic Sea: a future scenario simulation. Nat Hazards Earth Syst Sci 12:2065–2076. https://doi.org/10.5194/nhess-12-2065-2012
Article
Google Scholar
Bernstein L, Bosch P, Canziani O, Chen Z, Christ R, Riahi K (2008) IPCC, 2007: climate change 2007: synthesis report. IPCC, Geneva. ISBN 2-9169-122-4
Bertotti L, Bidlot J-R, Buizza R, Cavaleri L, Janousek M (2011) Deterministic and ensemble-based prediction of Adriatic Sea sirocco storms leading to ‘acqua alta’ in Venice. Q J R Meteorol Soc 137:1446–1466. https://doi.org/10.1002/qj.861
Article
Google Scholar
Beuvier J, Sevault F, Herrmann M, Kontoyiannis H, Ludwig W, Rixen M, Stanev E, Béranger K, Somot S (2010) Modeling the Mediterranean Sea interannual variability during 1961–2000: focus on the Eastern Mediterranean Transient. J Geophys Res Atmos 115:C08017. https://doi.org/10.1029/2009JC005950
Article
Google Scholar
Biolchi S, Furlani S, Devoto S, Scicchitano G, Korbar T, Vilibić I, Šepić J (2019a) The origin and dynamics of coastal boulders in a semi-enclosed shallow basin: a northern Adriatic case study. Mar Geol 411:62–77. https://doi.org/10.1016/j.margeo.2019.01.008
Article
Google Scholar
Biolchi S, Denamiel C, Devoto S, Korbar T, Macovaz V, Scicchitano G, Vilibić I, Furlani S (2019b) Impact of the October 2018 Storm Vaia on coastal boulders in the northern Adriatic Sea. Water 11:2229. https://doi.org/10.3390/w11112229
Article
Google Scholar
Bonaldo D, Bucchignani E, Ricchi A, Carniel S (2017) Wind storminess in the Adriatic Sea in a climate change scenario. Acta Adriat 58(2):195–208
Article
Google Scholar
Brogli R, Sørland SL, Kröner N, Schär C (2019a) Causes of future Mediterranean precipitation decline depend on the season. Environ Res Lett 14:114017. https://doi.org/10.1088/1748-9326/ab4438
Article
Google Scholar
Brogli R, Kröner N, Sørland SL, Lüthi D, Schär C (2019b) The role of Hadley circulation and lapse-rate changes for the future European summer climate. J Clim 32:385–404. https://doi.org/10.1175/JCLI-D-18-0431.1
Article
Google Scholar
Brzović N (1999) Factors affecting the Adriatic cyclone and associated windstorms. Contrib Atmos Phys 72:51–65
Google Scholar
Brzović N, Benković M (1994) Severe Adriatic bora storms 1987–1993. Croat Meteorol J 29:65–74. https://hrcak.srce.hr/69265
Brzovíć N, Strelec Mahović N (1999) Cyclonic activity and severe Jugo in the Adriatic. Phys Chem Earth B 24(6):653–657. https://doi.org/10.1016/S1464-1909(99)00061-1
Article
Google Scholar
Cavaleri L (2000) The oceanographic tower Acqua Alta activity and prediction of sea states at Venice. Coast Eng 39(1):29–70. https://doi.org/10.1016/S0378-3839(99)00053-8
Article
Google Scholar
Cavaleri L, Bertotti L, Buizza R, Buzzi A, Masato V, Umgiesser G, Zampieri M (2010) Predictability of extreme meteo-oceanographic events in the Adriatic Sea. Q J R Meteorol Soc 136:400–413. https://doi.org/10.1002/qj.567
Article
Google Scholar
Cavaleri L, Abdalla S, Benetazzo A, Bertotti L, Bidlot J-R, Breivik Ø, Carniel S, Jensen RE, Portilla-Yandun J, Rogers WE, Roland A, Sanchez-Arcilla A, Smith JM, Staneva J, Toledo Y, van Vledder GPh, van der Westhuysen AJ (2018) Wave modelling in coastal and inner seas. Prog Oceanogr 167:164–233. https://doi.org/10.1016/j.pocean.2018.03.010
Article
Google Scholar
Cavaleri L, Bajo M, Barbariol F, Bastianini M, Benetazzo A, Bertotti L, Chiggiato J, Davolio S, Ferrarin C, Magnusson L, Papa A, Pezzutto P, Pomaro A, Umgiesser G (2019) The October 29, 2018 storm in Northern Italy—an exceptional event and its modeling. Prog Oceanogr 178:102178. https://doi.org/10.1016/j.pocean.2019.102178
Article
Google Scholar
Cushman-Roisin B, Gačić M, Poulain P-M, Artegiani A (2001) Physical oceanography of the Adriatic Sea: past, present and future. Springer, New York
Book
Google Scholar
Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828
Article
Google Scholar
Denamiel C, Šepić J, Ivanković D, Vilibić I (2019) The Adriatic Sea and Coast modelling suite: evaluation of the meteotsunami forecast component. Ocean Model 135:71–93. https://doi.org/10.1016/j.ocemod.2019.02.003
Article
Google Scholar
Dietrich JC, Tanaka S, Westerink JJ, Dawson CN, Luettich RA Jr, Zijlema M, Holthuijsen LH, Smith JM, Westerink JG, Westerink HJ (2012) Performance of the Unstructured-Mesh, SWAN+ADCIRC Model in computing hurricane waves and surge. J Sci Comput 52:468–497. https://doi.org/10.1007/s10915-011-9555-6
Article
Google Scholar
Fosser G, Khodayar S, Berg P (2016) Climate change in the next 30 years: what can a convection-permitting model tell us that we did not already know? Clim Dyn 48:1987–2003. https://doi.org/10.1007/s00382-016-3186-4
Article
Google Scholar
Giorgi F, Gutowski WJ (2015) Regional dynamical downscaling and the CORDEX initiative. Ann Rev Environ Resour 40(1):467–490. https://doi.org/10.1146/annurev-environ-102014-021217
Article
Google Scholar
Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58(3):175–183
Google Scholar
Gohm A, Mayr GJ, Fix A, Giez A (2008) On the onset of bora and the formation of rotors and jumps near a mountain gap. Q J R Meteorol Soc 134:21–46. https://doi.org/10.1002/qj.206
Article
Google Scholar
Grisogono B, Belušić D (2009) A review of recent advances in understanding the meso- and microscale properties of the severe Bora wind. Tellus A 61:1–16. https://doi.org/10.1111/j.1600-0870.2008.00369.x
Article
Google Scholar
Gualdi S, Somot S, Li L, Artale V, Adani M, Bellucci A, Braun A, Calmanti S, Carillo A, Dell’Aquila A, Déqué M, Dubois C, Elizalde A, Harzallah A, Jacob D, L’Hévéder B, May W, Oddo P, Ruti P, Sanna A, Sannino G, Scoccimarro E, Sevault F, Navarra A (2013) The CIRCE simulations: regional climate change projections with realistic representation of the Mediterranean Sea. Bull Am Meteorol Soc 94:65–81. https://doi.org/10.1175/BAMS-D-11-00136.1
Article
Google Scholar
Han G, Ma Z, Long Z, Perrie W, Chassé J (2019) Climate change on Newfoundland and Labrador shelves: results from a regional downscaled ocean and sea-ice model under an A1B forcing scenario 2011–2069. Atmos Ocean 57(1):3–17. https://doi.org/10.1080/07055900.2017.1417110
Article
Google Scholar
Hintze HL, Nelson RD (1998) Violin plots: a box plot-density trace synergism. Am Stat 52(2):181–184. https://doi.org/10.1080/00031305.1998.10480559
Article
Google Scholar
Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY, Krinner G, LeVan P, Li ZX, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27:787–813. https://doi.org/10.1007/s00382-006-0158-0
Article
Google Scholar
Ivančan-Picek B, Tutiš V (1996) A case study of a severe Adriatic bora on 28 December 1992. Tellus A 48:357–367. https://doi.org/10.3402/tellusa.v48i3.12065
Article
Google Scholar
Janeković I, Mihanović H, Vilibić I, Tudor M (2014) Extreme cooling and dense water formation estimates in open and coastal regions of the Adriatic Sea during the winter of 2012. J Geophys Res Oceans 119:3200–3218. https://doi.org/10.1002/2014JC009865
Article
Google Scholar
Jenkins C, Trincardi F, Hatchett L, Niedoroda A, Goff J, Signell R, McKinney K (2005) http://instaar.colorado.edu/~jenkinsc/dbseabed/coverage/adriaticsea/adriatico.htm
Jiang Q, Doyle JD (2005) Wave breaking induced surface wakes and jets observed during a bora event. Geophys Res Lett 32:L17807. https://doi.org/10.1029/2005GL022398
Article
Google Scholar
Johns B, Rao AD, Dubinsky Z, Sinha PC (1985) Numerical modelling of tide-surge interaction in the Bay of Bengal. Philos Trans R Soc Lond Ser A Math Phys Sci 313(1526):507–535. https://doi.org/10.1098/rsta.1985.0002
Article
Google Scholar
Jordà G, Gomis D (2013) On the interpretation of the steric and mass components of sea-level variability: the case of the Mediterranean basin. J Geophys Res Oceans 118:953–963. https://doi.org/10.1002/jgrc.20060
Article
Google Scholar
Josipović L, Obermann-Hellhund A, Brisson E, Ahrens B (2018) Bora in regional climate models: impact of model resolution on simulations of gap wind and wave breaking. Croat Meteorol J 53:31–42. https://hrcak.srce.hr/231266
Jurčec V, Ivančan-Picek B, Tutiš V, Vukičević V (1996) Severe Adriatic jugo wind. Meteorol Z 5:67–75
Article
Google Scholar
Kendon EJ, Fowler HJ, Roberts MJ, Chan SC, Senior CA (2014) Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat Clim Change 4:570–576. https://doi.org/10.1038/nclimate2258
Article
Google Scholar
Kendon EJ, Ban N, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Evans JP, Fosser G, Wilkinson JM (2017) Do convection-permitting regional climate models improve projections of future precipitation change? Bull Am Meteorol Soc 98:79–93. https://doi.org/10.1175/BAMS-D-15-0004.1
Article
Google Scholar
Klaić ZB, Belušić D, Grubišić V, Gabela L, Ćoso L (2003) Mesoscale airflow structure over the northern Croatian coast during MAP IOP15—a major bora event. Geofizika 20:23–60
Google Scholar
Klaić ZB, Prodanov AD, Belušić D (2009) Wind measurements in Senj: underestimation of true bora flows. Geofizika 26:245–252
Google Scholar
Komen GJ, Hasselmann S, Hasselmann K (1984) On the existence of a fully developed wind-sea spectrum. J Phys Oceanogr 14:1271–1285. https://doi.org/10.1175/1520-0485(1984)014%3c1271:OTEOAF%3e2.0.CO;2
Article
Google Scholar
Kröner N, Kotlarski S, Fischer E, Lüthi D, Zubler E, Schär C (2017) Separating climate change signals into thermodynamic, lapse-rate and circulation effects: theory and application to the European summer climate. Clim Dyn 48:3425–3440. https://doi.org/10.1007/s00382-016-3276-3
Article
Google Scholar
Kuzmić M, Janeković I, Ivančan-Picek B, Trošić T, Tomažić I (2005) Severe northeastern Adriatic bura events and circulation in greater Kvarner region. Croat Meteorol J 40:320–323
Google Scholar
Leder N, Smirčić A, Vilibić I (1998) Extreme values of surface wave heights in the Northern Adriatic. Geofizika 15:1–13
Google Scholar
Li Y, Li Z, Zhang Z, Chen L, Kurkute S, Scaff L, Pan X (2019) High-resolution regional climate modeling and projection over western Canada using a weather research forecasting model with a pseudo-global warming approach. Hydrol Earth Syst Sci 23(11):4635–4659. https://doi.org/10.5194/hess-23-4635-2019
Article
Google Scholar
Ličer M, Smerkol P, Fettich A, Ravdas M, Papapostolou A, Mantziafou A, Strajnar B, Cedilnik J, Jeromel M, Jerman J, Petan S, Malačič V, Sofianos S (2016) Modeling the ocean and atmosphere during an extreme bora event in northern Adriatic using one-way and two-way atmosphere–ocean coupling. Ocean Sci 12:71–86. https://doi.org/10.5194/os-12-71-2016
Article
Google Scholar
Lionello P, Cavaleri L, Nissen KM, Pino C, Raicich F, Ulbrich U (2012a) Severe marine storms in the Northern Adriatic: characteristics and trends. Phys Chem Earth 40(41):93–105. https://doi.org/10.1016/j.pce.2010.10.002
Article
Google Scholar
Lionello P, Galati MB, Elvini E (2012b) Extreme storm surge and wind wave climate scenario simulations at the Venetian littoral. Phys Chem Earth 40(41):86–92. https://doi.org/10.1016/j.pce.2010.04.001
Article
Google Scholar
Ludwig W, Dumont E, Meybeck M, Heussner S (2009) River discharges of water and nutrients to the Mediterranean and Black Sea: major drivers for ecosystem changes during past and future decades? Prog Oceanogr 80(3–4):199–217. https://doi.org/10.1016/j.pocean.2009.02.001
Article
Google Scholar
Macias D, Stips A, Garcia-Gorriz E, Dosio A (2018) Hydrological and biogeochemical response of the Mediterranean Sea to freshwater flow changes for the end of the 21st century. PLoS One 13(2):e0192174. https://doi.org/10.1371/journal.pone.0192174
Article
Google Scholar
Madsen OS, Poon Y-K, Graber HC (1988) Spectral wave attenuation by bottom friction: theory. In: Proceedings of the 21st international conference on coastal engineering, ASCE, pp 492–504
Međugorac I, Pasarić M, Orlić M (2015) Severe flooding along the eastern Adriatic coast: the case of 1 December 2008. Ocean Dyn 65:817–830. https://doi.org/10.1007/s10236-015-0835-9
Article
Google Scholar
Mel R, Sterl A, Lionello P (2013) High resolution climate projection of storm surge at the Venetian coast. Nat Hazards Earth Syst Sci 13:1135–1142. https://doi.org/10.5194/nhess-13-1135-2013
Article
Google Scholar
Pan L-L, Chen S-H, Cayan D, Lin M-Y, Hart Q, Zhang M-H, Liu Y, Wang J (2011) Influences of climate change on California and Nevada regions revealed by a high-resolution dynamical downscaling study. Clim Dyn 37:2005–2020. https://doi.org/10.1007/s00382-010-0961-5
Article
Google Scholar
Parker BB (1991) The Relative Importance of the various nonlinear mechanisms in a wide range of tidal interaction (review). Tidal hydrodynamics. Wiley, New York, pp 237–268
Google Scholar
Pasarić M, Orlić M (2004) Meteorological forcing of the Adriatic: present vs. projected climate conditions. Geofizika 21:69–86
Google Scholar
Pasarić Z, Belušić D, Klaić ZB (2007) Orographic influences on the Adriatic sirocco wind. Ann Geophys 25:1263–1267
Article
Google Scholar
Penzar B, Penzar I, Orlić M (2001) Vrijeme i klima hrvatskog Jadrana. Nakladna kuća. ‘Dr. Feletar’, Zagreb
Google Scholar
Pinardi N, Allen I, Demirov E, De Mey P, Korres G, Lascaratos A, Le Traon P-Y, Maillard C, Manzella G, Tziavos C (2003) The Mediterranean ocean Forecasting System: first phase of implementation (1998–2001). Ann Geophys 21:3–20. https://doi.org/10.5194/angeo-21-3-2003
Article
Google Scholar
Poje D (1992) Wind persistence in Croatia. Int J Climatol 12:569–586
Article
Google Scholar
Pomaro A, Cavaleri L, Lionello P (2017) Climatology and trends of the Adriatic Sea wind waves: analysis of a 37-year long instrumental data set. Int J Climatol 37:4237–4250. https://doi.org/10.1002/joc.5066
Article
Google Scholar
Pomaro A, Cavaleri L, Papa A, Lionello P (2018) 39 years of directional wave recorded data and relative problems, climatological implications and use. Sci Data 5:180139. https://doi.org/10.1038/sdata.2018.139
Article
Google Scholar
Prein AF, Langhans W, Fosser G, Ferrone A, Ban N, Goergen K, Keller M, Tölle M, Gutjahr O, Feser F, Brisson E, Kollet S, Schmidli J, van Lipzig NPM, Leung R (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects and challenges. Rev Geophys 53:323–361. https://doi.org/10.1002/2014RG000475
Article
Google Scholar
Prtenjak MT, Belušić D (2009) Formation of reversed lee flow over the north-eastern Adriatic during bora. Geofizika 26:145–155
Google Scholar
Prtenjak MT, Viher M, Jurković J (2010) Sea-land breeze development during a summer bora event along the north-eastern Adriatic coast. Q J R Meteorol Soc 136:1554–1571. https://doi.org/10.1002/qj.649
Article
Google Scholar
Pullen J, Doyle JD, Signell RP (2006) Two-way air–sea coupling: a study of the Adriatic. Mon Weather Rev 134:1465–1483. https://doi.org/10.1175/MWR3137.1
Article
Google Scholar
Raicich F (2015) Long-term variability of storm surge frequency in the Venice Lagoon: an update thanks to 18th century sea-level observations. Nat Hazards Earth Syst Sci 15:527–535. https://doi.org/10.5194/nhess-15-527-2015
Article
Google Scholar
Rasmussen R, Liu C, Ikeda K, Gochis D, Yates D, Chen F, Tewari M, Barlage M, Dudhia J, Yu W, Miller K, Arsenault K, Grubišić V, Thompson G, Gutmann E (2011) High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: a process study of current and warmer climate. J Clim 24:3015–3048. https://doi.org/10.1175/2010JCLI3985.1
Article
Google Scholar
Rasmussen R, Ikeda K, Liu C, Gochis D, Clark M, Dai A, Gutmann E, Dudhia J, Chen F, Barlage M, Yates D, Zhang G (2014) Climate change impacts on the water balance of the Colorado headwaters: High-resolution regional climate model simulations. J Hydrometeorol 15:1091–1116. https://doi.org/10.1175/JHM-D-13-0118.1
Article
Google Scholar
Ravdas M, Zacharioudaki A, Korres G (2018) Implementation and validation of a new operational wave forecasting system of the Mediterranean Monitoring and Forecasting Centre in the framework of the Copernicus Marine Environment Monitoring Service. Nat Hazards Earth Syst Sci 18:2675–2695. https://doi.org/10.5194/nhess-18-2675-2018
Article
Google Scholar
Ricchi A, Miglietta MM, Falco PP, Benetazzo A, Bonaldo D, Bergamasco A, Sclavo M, Carniel S (2016) On the use of a coupled ocean–atmosphere–wave model during an extreme cold air outbreak over the Adriatic Sea. Atmos Res 172–173:48–65. https://doi.org/10.1016/j.atmosres.2015.12.023
Article
Google Scholar
Rizzi J, Torresan S, Zabeo A, Critto A, Tosoni A, Tomasin A, Marcomini A (2017) Assessing storm surge risk under future sea-level rise scenarios: a case study in the North Adriatic coast. J Coast Conserv 21:453–471. https://doi.org/10.1007/s11852-017-0517-5
Article
Google Scholar
Robinson AR, Tomasin A, Artegiani A (1973) Flooding of Venice: phenomenology and prediction of the Adriatic Sea storm surge. Q J R Meteorol Soc 99:688–692. https://doi.org/10.1002/qj.49709942210
Article
Google Scholar
Ruti PM, Somot S, Giorgi F, Dubois C, Flaounas E, Obermann A, Dell’Aquila A, Pisacane G, Harzallah A et al (2016) Med-CORDEX initiative for Mediterranean climate studies. Bull Am Meteorol Soc 97:1187–1208. https://doi.org/10.1175/BAMS-D-14-00176.1
Article
Google Scholar
Schär C, Frei C, Luthi D, Davies HC (1996) Surrogate climate-change scenarios for regional climate models. Geophys Res Lett 23:669–672. https://doi.org/10.1029/96GL00265
Article
Google Scholar
Speer PE, Aubrey DG (1985) A study of non-linear tidal propagation in shallow inlet/estuarine systems. Part II: theory. Estuar Coast Shelf Sci 21(2):207–224. https://doi.org/10.1016/0272-7714(85)90097-6
Article
Google Scholar
Tinker J, Lowe J, Pardaens A, Holt J, Rosa Barciela (2016) Uncertainty in climate projections for the 21st century northwest European shelf seas. Prog Oceanogr 148:56–73. https://doi.org/10.1016/j.pocean.2016.09.003
Article
Google Scholar
Tolle MH, Gutjahr O, Busch G, Thiele JC (2014) Increasing bioenergy production on arable land: does the regional and local climate respond? Germany as a case study. J Geophys Res Atmos 119:2711–2724. https://doi.org/10.1002/2013JD020877
Article
Google Scholar
Torresan S, Gallina V, Gualdi S, Bellafiore D, Umgiesser G, Carniel S, Sclavo M, Benetazzo A, Giubilato E, Critto A (2019) Assessment of climate change impacts in the North Adriatic coastal area. Part I: a multi-model chain for the definition of climate change hazard scenarios. Water 11:1157. https://doi.org/10.3390/w11061157
Article
Google Scholar
Trigo IF, Davies TD (2002) Meteorological conditions associated with sea surges in Venice: a 40 year climatology. Int J Climatol 22:787–803. https://doi.org/10.1002/joc.719
Article
Google Scholar
Trošić T (2015) The onset of a severe summer bora episode near Oštarijska Vrata Pass in the Northern Adriatic. Meteorol Atmos Phys 127:649–658. https://doi.org/10.1007/s00703-015-0393-1
Article
Google Scholar
Tsimplis M, Marcos M, Somot S, Barnier B (2008) Sea-level forcing in the Mediterranean Sea between 1960 and 2000. Glob Planet Change 63(4):325–332. https://doi.org/10.1016/j.gloplacha.2008.07.004
Article
Google Scholar
Vilibić I, Šepić J, Proust N (2013) Weakening thermohaline circulation in the Adriatic Sea. Clim Res 55(3):217–225. https://doi.org/10.3354/cr01128
Article
Google Scholar
Vilibić I, Šepić J, Pasarić M, Orlić M (2017) The Adriatic Sea: a long-standing laboratory for sea-level studies. Pure Appl Geophys 174:3765–3811. https://doi.org/10.1007/s00024-017-1625-8
Article
Google Scholar
Warner JC, Armstrong B, He R, Zambon JB (2010) Development of a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system. Ocean Model 35:230–244. https://doi.org/10.1016/j.ocemod.2010.07.010
Article
Google Scholar
Yang W, Yin B, Feng X, Yang D, Gao G, Chen H (2019) The effect of nonlinear factors on tide-surge interaction: a case study of Typhoon Rammasun in Tieshan Bay, China. Estuar Coast Shelf Sci 219:420–428. https://doi.org/10.1016/j.ecss.2019.01.024
Article
Google Scholar
Zhang H, Cheng W, Qiu X, Feng X, Gong W (2017) Tide-surge interaction along the east coast of the Leizhou Peninsula, south China sea. Cont Shelf Res 142:32–49. https://doi.org/10.1016/j.csr.2017.05.015
Article
Google Scholar
Zou L, Zhou T (2016) A regional ocean–atmosphere coupled model developed for CORDEX East Asia: assessment of Asian summer monsoon simulation. Clim Dyn 47:3627–3640. https://doi.org/10.1007/s00382-016-3032-8
Article
Google Scholar