Skip to main content

Advertisement

Log in

Systematic identification of causal relations in high-dimensional chaotic systems: application to stratosphere-troposphere coupling

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Obtaining reliable causal inference is crucial for understanding the climate system. Convergent Cross Mapping (CCM), a recently developed method to infer causal relationships from time series has been shown to be superior to previous methods which are based on linearity assumptions. However, CCM has so far been only tested on low-dimensional or bivariate models, while real-world systems, like the climate system, are high-dimensional and have many more interacting variables. Here, we demonstrate that standard CCM cannot reliably infer causal relations in high-dimensional chaotic systems. However, by using a hierarchy of conceptual models and observational data we show that time-lagged CCM reliably identifies causal relationships in contrast to standard CCM and Pearson correlation. Furthermore, we systematically demonstrate that time-lagged CCM is able to identify long-distance causal interactions. Moreover, we apply time-lagged CCM to detect causal relations in stratosphere-troposphere coupling, and demonstrate the downward causal chain induced by polar vortex activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Badin G, Domeisen DIV (2014) A search for chaotic behavior in stratospheric variability: comparison between the Northern and Southern Hemisphere. J Atmos Sci 71:4611–4620

    Google Scholar 

  • Baldwin MP, Thompson DW (2009) A critical comparison of stratosphere-troposphere coupling indices. Q J R Meteorol Soc 135(644):1661–1672

    Google Scholar 

  • Baldwin MP, Stephenson DB, Thompson DW, Dunkerton TJ, Charlton AJ, O'Neill A (2003a) Stratospheric memory and skill of extended-range weather forecasts. Science 301(5633):636–640

    Google Scholar 

  • Baldwin MP, Thompson DW, Shuckburgh EF, Norton WA, Gillett NP (2003b) Weather from the stratosphere? Science 301(5631):317–319

    Google Scholar 

  • Barnes EA, Simpson IR (2017) Seasonal sensitivity of the Northern Hemisphere jet streams to Arctic temperatures on subseasonal time scales. J Clim 30(24):10117–10137

    Google Scholar 

  • Coufal D, Jakubík J, Jajcay N, Hlinka J, Krakovská A, Paluš M (2017) Detection of coupling delay: a problem not yet solved. Chaos 27(8):083109

    Google Scholar 

  • Davini P, Cagnazzo C, Anstey JA (2014) A blocking view of the stratosphere-troposphere coupling. J Geophys Res 119(19):11–100

    Google Scholar 

  • Donner R, Barbosa S, Kurths J, Marwan N (2009) Understanding the Earth as a complex system: recent advances in data analysis and modeling in Earth sciences. Euro Phys J Spec Topics 174(1):1–9

    Google Scholar 

  • Franzke CL, Jelic D, Lee S, Feldstein SB (2019) Systematic decomposition of the MJO and its Northern Hemispheric extratropical response into Rossby and inertia-gravity components. Q J R Meteorol Soc 145(720):1147–1164

    Google Scholar 

  • Gans F, Schumann AY, Kantelhardt JW, Penzel T, Fietze I (2009) Cross-modulated amplitudes and frequencies characterize interacting components in complex systems. Phys Rev Lett 102(9):098701

    Google Scholar 

  • Granger CW (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37(3):424–438

    Google Scholar 

  • Hannachi A, Straus DM, Franzke CL, Corti S, Woollings T (2017) Low-frequency nonlinearity and regime behavior in the Northern Hemisphere extratropical atmosphere. Rev Geophys 55(1):199–234

    Google Scholar 

  • Haynes PH (2005) Stratospheric dynamics. Ann Rev Fluid Mech 37:263–293

    Google Scholar 

  • Hirota I, Niki T (1986) Inertia-gravity waves in the troposphere and stratosphere observed by the MU radar. J Meteorol Soc Jpn Ser II 64(6):995–999

    Google Scholar 

  • Hlaváčková-Schindler K, Paluš M, Vejmelka M, Bhattacharya J (2007) Causality detection based on information-theoretic approaches in time series analysis. Phys Rep 441(1):1–46

    Google Scholar 

  • Hu G, Franzke CL (2017) Data assimilation in a multi-scale model. Math Clim Weather Forecast 3(1):118–139

    Google Scholar 

  • Huang Y, Fu Z, Franzke CL (2020) Detecting causality from time series in a machine learning framework. Chaos 30(6):063116

    Google Scholar 

  • Jajcay N, Hlinka J, Kravtsov S, Tsonis AA, Paluš M (2016) Time scales of the European surface air temperature variability: the role of the 7–8 year cycle. Geophys Res Lett 43(2):902–909

    Google Scholar 

  • Jajcay N, Kravtsov S, Sugihara G, Tsonis AA, Paluš M (2018) Synchronization and causality across time scales in El Niño Southern Oscillation. NPJ Clim Atmos Sci 1:33

    Google Scholar 

  • Kantz H, Schreiber T (2004) Nonlinear time series analysis, vol 7. Cambridge University Press, Cambridge

    Google Scholar 

  • Krakovská A, Jakubík J, Chvosteková M, Coufal D, Jajcay N, Paluš M (2018) Comparison of six methods for the detection of causality in a bivariate time series. Phys Rev E 97(4):042207

    Google Scholar 

  • Kretschmer M, Runge J, Coumou D (2017) Early prediction of extreme stratospheric polar vortex states based on causal precursors. Geophys Res Lett 44(16):8592–8600

    Google Scholar 

  • Kuroda Y, Kodera K (1999) Role of planetary waves in the stratosphere-troposphere coupled variability in the Northern Hemisphere winter. Geophys Res Lett 26(15):2375–2378

    Google Scholar 

  • Lawrence ZD, Manney GL (2018) Characterizing stratospheric polar vortex variability with computer vision techniques. J Geophys Res 123(3):1510–1535

    Google Scholar 

  • Li J, Ding R (2011) Temporal–spatial distribution of atmospheric predictability limit by local dynamical analogs. Mon Wea Rev 139(10):3265–3283

    Google Scholar 

  • Limpasuvan V, Hartmann DL, Thompson DW, Jeev K, Yung YL (2005) Stratosphere-troposphere evolution during polar vortex intensification. J Geophys Res 110(D24):1–15

    Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20(2):130–141

    Google Scholar 

  • Lorenz EN (1996) Predictability: a problem partly solved. In: Proceedings of ECMWF Seminar on Predictability, vol I, Reading, United Kingdom, ECMWF, pp 40–58

  • Lucio JH, Valdés R, Rodríguez LR (2012) Improvements to surrogate data methods for nonstationary time series. Phys Rev E 85(5):056202

    Google Scholar 

  • Malevergne Y, Sornette D (2006) Extreme financial risks: from dependence to risk management. Springer, New York

    Google Scholar 

  • McCracken JM, Weigel RS (2014) Convergent cross-mapping and pairwise asymmetric inference. Phys Rev E 90(6):062903

    Google Scholar 

  • McGraw MC, Barnes EA (2018) Memory matters: a case for Granger causality in climate variability studies. J Clim 31(8):3289–3300

    Google Scholar 

  • Morgenstern O, Akiyoshi H, Bekki S, Braesicke P, Butchart N, Chipperfield M P, Gettelman A (2010) Anthropogenic forcing of the Northern Annular Mode in CCMVal-2 models. J Geo Res 115(D3)

  • Newman M, Compo GP, Alexander MA (2003) ENSO-forced variability of the Pacific decadal oscillation. J Clim 16(23):3853–3857

    Google Scholar 

  • Nian D, Fu Z (2019) Contrasting stratospheric-tropospheric multifractal behaviors in NAM variability. Clim Dyn. https://doi.org/10.1007/s00382-019-04981-0

    Article  Google Scholar 

  • Osprey SM, Ambaum MH (2011) Evidence for the chaotic origin of Northern annular mode variability. Geophys Res Lett 38(15):L15702

    Google Scholar 

  • Paluš M (2014) Multiscale atmospheric dynamics: Cross-frequency phase-amplitude coupling in the air temperature. Phys Rev Lett 112(7):078702

    Google Scholar 

  • Paluš M, Krakovská A, Jakubík J, Chvosteková M (2018) Causality, dynamical systems and the arrow of time. Chaos 28(7):075307

    Google Scholar 

  • Quadrelli R, Wallace JM (2002) Dependence of the structure of the Northern Hemisphere annular mode on the polarity of ENSO. Geophys Res Lett 29(23):47–51

    Google Scholar 

  • Reichenbach H (1956) The direction of time. University of California Press, Berkeley and Los Angeles

    Google Scholar 

  • Roe G (2009) Feedbacks, timescales and seeing red. Ann Rev Earth Plan Sci 37:93–115

    Google Scholar 

  • Ruan Y, Donner RV, Guan S, Zou Y (2019) Ordinal partition transition network based complexity measures for inferring coupling direction and delay from time series. Chaos 29(4):043111

    Google Scholar 

  • Runge J, Balasis G, Daglis IA, Papadimitriou C, Donner RV (2018) Common solar wind drivers behind magnetic storm–magnetospheric substorm dependency. Sci Rep 8(1):16987

    Google Scholar 

  • Runge J, Bathiany S, Bollt E, Camps-Valls G, Coumou D, Deyle E, van Nes EH (2019) Inferring causation from time series in earth system sciences. Nat Commun 10(1):2553

    Google Scholar 

  • Ruzmaikin A, Feynman J (2002) Solar influence on a major mode of atmospheric variability. J Geophys Res 107(D14):ACL-7

    Google Scholar 

  • Scaife AA, Spangehl T, Fereday DR, Cubasch U, Langematz U, Akiyoshi H, Gettelman A (2012) Climate change projections and stratosphere–troposphere interaction. Clim Dyn 38(9–10):2089–2097

    Google Scholar 

  • Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85(2):461

    Google Scholar 

  • Schreiber T, Schmitz A (1996) Improved surrogate data for nonlinearity tests. Phys Rev Lett 77(4):635

    Google Scholar 

  • Schreiber T, Schmitz A (2000) Surrogate time series. Phys D 142(3–4):346–382

    Google Scholar 

  • Strogatz SH (2018) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. CRC Press, Boca Raton

    Google Scholar 

  • Stuecker MF, Timmermann A, Jin FF, Chikamoto Y, Zhang W, Wittenberg AT, Zhao S (2017) Revisiting ENSO/Indian Ocean dipole phase relationships. Geophys Res Lett 44(5):2481–2492

    Google Scholar 

  • Sugihara G (1994) Nonlinear forecasting for the classification of natural time series. Philos Trans R Soc Lond Ser A 348(1688):477–495

    Google Scholar 

  • Sugihara G, May R, Ye H, Hsieh CH, Deyle E, Fogarty M, Munch S (2012) Detecting causality in complex ecosystems. Science 338(6106):496–500

    Google Scholar 

  • Takens F (1981) Detecting strange attractors in turbulence. Dynamical Systems and Turbulence Lecture Notes in Mathematics 898: 366–381 (Springer Berlin Heidelberg)

  • Thompson DW, Wallace JM (2001) Regional climate impacts of the Northern Hemisphere annular mode. Science 293(5527):85–89

    Google Scholar 

  • Tsonis AA, Deyle ER, Ye H, Sugihara G (2018) Convergent cross mapping: theory and an example. Advances in nonlinear geosciences. Springer, Cham, pp 587–600

    Google Scholar 

  • Van Nes EH, Scheffer M, Brovkin V, Lenton TM, Ye H, Deyle E, Sugihara G (2015) Causal feedbacks in climate change. Nat Clim Change 5(5):445

    Google Scholar 

  • Vannitsem S, Ekelmans P (2018) Causal dependences between the coupled ocean–atmosphere dynamics over the tropical Pacific, the North Pacific and the North Atlantic. Earth Syst Dyn 9(3):1063–1083

    Google Scholar 

  • Vannitsem S, Ghil M (2017) Evidence of coupling in ocean-atmosphere dynamics over the North Atlantic. Geophys Res Let 44(4):2016–2026

    Google Scholar 

  • Vissio G, Lucarini V (2018) A proof of concept for scale-adaptive parameterizations: the case of the Lorenz 96 model. Q J R Meteorol Soc 144(710):63–75

    Google Scholar 

  • Wang G, Yang P, Zhou X, Swanson KL, Tsonis AA (2012) Directional influences on global temperature prediction. Geophys Res Lett 39(13):L13704

    Google Scholar 

  • Wang G, Yang P, Zhou X (2017) Identification of the driving forces of climate change using the longest instrumental temperature record. Sci Rep 7:46091

    Google Scholar 

  • Wang G, Zhang N, Fan K, Palus M (2019) Central European air temperature: driving force analysis and causal influence of NAO. Theor Appl Clim 137(1–2):1421–1427

    Google Scholar 

  • Wilks DS (2005) Effects of stochastic parametrizations in the Lorenz'96 system. Q J R Meteorol Soc 131(606):389–407

    Google Scholar 

  • Woollings T, Hannachi A, Hoskins B (2010) Variability of the North Atlantic eddy-driven jet stream. Q J R Meteorol Soc 136(649):856–868

    Google Scholar 

  • Ye H, Deyle ER, Gilarranz LJ, Sugihara G (2015) Distinguishing time-delayed causal interactions using convergent cross mapping. Sci Rep 5:14750

    Google Scholar 

  • Yoden S, Taguchi M, Naito Y (2002) Numerical studies on time variations of the troposphere-stratosphere coupled system. J Met Soc Jpn 80:811–830

    Google Scholar 

  • Zhang NN, Wang G, Tsonis AA (2019) Dynamical evidence for causality between Northern Hemisphere annular mode and winter surface air temperature over Northeast Asia. Clim Dyn 52:3175–3182

    Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their constructive comments. We thank Da Nian for some helpful discussion about this study. We acknowledge the support from the National Natural Science Foundation of China through Grants No. 41975059 and No. 41675049. CF was supported by the Collaborative Research Centre TRR 181 “Energy Transfer in Atmosphere and Ocean”, funded by the Deutsche Forschungs-gemeinschaft (DFG, German Research Foundation)-Project Number 274762653.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuntao Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Franzke, C.L.E., Yuan, N. et al. Systematic identification of causal relations in high-dimensional chaotic systems: application to stratosphere-troposphere coupling. Clim Dyn 55, 2469–2481 (2020). https://doi.org/10.1007/s00382-020-05394-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05394-0

Keywords

Navigation