North Pacific zonal wind response to sea ice loss in the Polar Amplification Model Intercomparison Project and its downstream implications

Abstract

Recent studies suggest that the wintertime North Pacific eddy-driven jet stream will strengthen and extend eastward in response to Arctic sea ice loss. Using output from the Polar Amplification Model Intercomparison Project we examine the mean change of the North Pacific wintertime zonal winds, and use cluster analysis to explore the change in sub-seasonal, wintertime variability in zonal winds between experiments with future Arctic sea ice concentrations relative to a pre-industrial run. Further, given the relationship between the North Pacific jet stream and North American weather regimes, we also examine the changes in surface temperature variability over North America. The four climate models investigated here exhibit robust agreement in both sign and structure of the atmospheric responses, with a strengthened wintertime North Pacific jet, an increase in anomalously strong and extended jet events, and a decreased frequency of weakened and equatorward-shifted jet events in response to reduced Arctic sea ice. The models also show changes in wintertime, North American surface temperature patterns that are consistent with the zonal wind changes seen in the North Pacific. There is an increase in the frequency of occurrence of the North American temperature dipole pattern, defined as anomalously warm temperatures in the west or northwest and anomalously cold temperatures in the east or southeast, and a decrease in the frequency of anomalously cold temperatures over North America.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Barnes EA, Screen JA (2015) The impact of Arctic warming on the midlatitude jet-stream: can it? Has it? Will it? Wiley Interdiscip Rev Clim Change 6:277–286. https://doi.org/10.1002/wcc.337

    Article  Google Scholar 

  2. Blackport R, Screen JA (2019) Influence of arctic sea ice loss in autumn compared to that in winter on the atmospheric circulation. Geophys Res Lett 46(4):2213–2221

    Article  Google Scholar 

  3. Chien YT, Wang SYS, Chikamoto Y, Voelker SL, Meyer JDD, Yoon JH (2019) North american winter dipole: observed and simulated changes in circulations. Atmosphere 10(12):793

    Article  Google Scholar 

  4. Ciavarella A, Christidis N, Andrews M, Groenendijk M, Rostron J, Elkington M, Burke C, Lott FC, Stott PA (2018) Upgrade of the HadGEM3-A based attribution system to high resolution and a new validation framework for probabilistic event attribution. Weather Clim Extremes 20:9–32

    Article  Google Scholar 

  5. Cohen J, Pfeiffer K, Francis JA (2018) Warm arctic episodes linked with increased frequency of extreme winter weather in the united states. Nat Commun 9(1):869

    Article  Google Scholar 

  6. Cohen J, Zhang X, Francis J, Jung T, Kwok R, Overland J, Ballinger TJ, Bhatt US, Chen HW, Coumou D, Feldstein S, Gu H, Handorf D, Henderson G, Ionita M, Kretschmer M, Laliberte F, Lee S, Linderholm HW, Maslowski W, Peings Y, Pfeiffer K, Rigor I, Semmler T, Stroeve J, Taylor PC, Vavrus S, Vihma T, Wang S, Wendisch M, Wu Y, Yoon J (2020) Divergent consensuses on arctic amplification influence on midlatitude severe winter weather. Nat Clim Change 10(1):20–29

    Article  Google Scholar 

  7. Cvijanovic I, Santer BD, Bonfils C, Lucas DD, Chiang JCH, Zimmerman S (2017) Future loss of arctic sea-ice cover could drive a substantial decrease in california’s rainfall. Nat Commun 8(1):1947

    Article  Google Scholar 

  8. Danabasoglu G, Lamarque JF, Bacmeister J, Bailey DA, DuVivier AK, Edwards J, Emmons LK, Fasullo J, Garcia R, Gettelman A, Hannay C, Holland MM, Large WG, Lauritzen PH, Lawrence DM, Lenaerts JTM, Lindsay K, Lipscomb WH, Mills MJ, Neale R, Oleson KW, Otto-Bliesner B, Phillips AS, Sacks W, Tilmes S, Kampenhout L, Vertenstein M, Bertini A, Dennis J, Deser C, Fischer C, Fox-Kemper B, Kay JE, Kinnison D, Kushner PJ, Larson VE, Long MC, Mickelson S, Moore JK, Nienhouse E, Polvani L, Rasch PJ, Strand WG (2020) The community earth system model version 2 (CESM2). J Adv Model Earth Syst 12(2):106

    Article  Google Scholar 

  9. Deser C, Tomas RA, Sun L (2015) The role of ocean-atmosphere coupling in the zonal-mean atmospheric response to Arctic sea ice loss. J Clim 28:2168–2186. https://doi.org/10.1175/JCLI-D-14-00325.1

    Article  Google Scholar 

  10. Deser C, Sun L, Tomas RA, Screen J (2016) Does ocean coupling matter for the northern extratropical response to projected Arctic sea ice loss? Geophys Res Lett. https://doi.org/10.1002/2016GL067792

    Article  Google Scholar 

  11. Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development (Online) 9(LLNL-JRNL-736881)

  12. Griffin KS, Martin JE (2017) Synoptic features associated with temporally coherent modes of variability of the north pacific jet stream. J Clim 30(1):39–54

    Article  Google Scholar 

  13. Hartigan JA, Wong MA (1979) Algorithm AS 136: a K-means clustering algorithm. J R Stat Soc Ser C Appl Stat 28(1):100–108

    Google Scholar 

  14. Jaffe SC, Martin JE, Vimont DJ, Lorenz DJ (2011) A synoptic climatology of episodic, subseasonal retractions of the pacific jet. J Clim 24(11):2846–2860

    Article  Google Scholar 

  15. Kug JS, Jeong JH, Jang YS, Kim BM, Folland CK, Min SK, Son SW (2015) Two distinct influences of arctic warming on cold winters over north america and east asia. Nat Geosci 8(10):759–762

    Article  Google Scholar 

  16. Lee M, Hong C, Hsu H (2015) Compounding effects of warm sea surface temperature and reduced sea ice on the extreme circulation over the extratropical north pacific and north america during the 2013–2014 boreal winter. Geophys Res Lett 42(5):1612–1618

    Article  Google Scholar 

  17. Li M, Luo D (2019) Winter arctic warming and its linkage with midlatitude atmospheric circulation and associated cold extremes: The key role of meridional potential vorticity gradient. Sci China Earth Sci 62(9):1329–1339

    Article  Google Scholar 

  18. McGraw MC, Barnes EA (2016) Seasonal sensitivity of the eddy-driven jet to tropospheric heating in an idealized AGCM. J Clim 29:5223–5240. https://doi.org/10.1175/JCLI-D-15-0723.1

    Article  Google Scholar 

  19. Nakamura T, Yamazaki K, Iwamoto K, Honda M, Miyoshi Y, Ogawa Y, Tomikawa Y, Ukita J (2016) The stratospheric pathway for arctic impacts on midlatitude climate. Geophys Res Lett 43(7):3494–3501

    Article  Google Scholar 

  20. Overland JE, Wang M (2018a) Arctic-midlatitude weather linkages in north america. Polar Sci 16:1–9

    Article  Google Scholar 

  21. Overland JE, Wang M (2018b) Resolving future Arctic/Midlatitude weather connections. Earth’s Future 6(8):1146–1152

    Article  Google Scholar 

  22. Peings Y (2018) The atmospheric response to sea-ice loss. Nat Clim Change 8(8):664–665

    Article  Google Scholar 

  23. Rayner N, Parker DE, Folland CK, Horton EB, Alexander LV, Rowell DP (2003) The global sea-ice and sea surface temperature (HadISST) data sets. J Geophys Res 108(D14):4407

  24. Romanowsky E, Handorf D, Jaiser R, Wohltmann I, Dorn W, Ukita J, Cohen J, Dethloff K, Rex M (2019) The role of stratospheric ozone for arctic-midlatitude linkages. Sci Rep 9(1):7962

    Article  Google Scholar 

  25. Ronalds B, Barnes EA (2019) A role for barotropic Eddy–Mean flow feedbacks in the zonal wind response to sea ice loss and arctic amplification. J Clim 32(21):7469–7481

  26. Ronalds B, Barnes E, Hassanzadeh P (2018) A barotropic mechanism for the response of jet stream variability to arctic amplification and sea ice loss. J Clim 31(17):7069–7085

    Article  Google Scholar 

  27. Screen JA, Bracegirdle TJ, Simmonds I (2018a) Polar climate change as manifest in atmospheric circulation. Curr Clim Change Rep 4:383–395

  28. Screen JA, Deser C, Smith DM, Zhang X, Blackport R, Kushner PJ, Oudar T, McCusker KE, Sun L (2018b) Consistency and discrepancy in the atmospheric response to arctic sea-ice loss across climate models. Nat Geosci 11(3):155–163

    Article  Google Scholar 

  29. Sellevold R, Sobolowski S, Li C (2016) Investigating possible Arctic-Midlatitude teleconnections in a linear framework. J Clim 29(20):7329–7343

    Article  Google Scholar 

  30. Singh D, Swain DL, Mankin JS, Horton DE, Thomas LN, Rajaratnam B, Diffenbaugh NS (2016) Recent amplification of the north american winter temperature dipole. J Geophys Res D Atmos 121(17):9911–9928

    Article  Google Scholar 

  31. Smith DM, Dunstone NJ, Scaife AA, Fiedler EK, Copsey D, Hardiman SC (2017) Atmospheric response to Arctic and Antarctic sea ice: the importance of ocean-atmosphere coupling and the background state. J Clim. https://doi.org/10.1175/JCLI-D-16-0564.1

    Article  Google Scholar 

  32. Smith DM, Screen JA, Deser C, Cohen J, Fyfe JC, García-Serrano J, Jung T, Kattsov V, Matei D, Msadek R, Peings Y, Sigmond M, Ukita J, Yoon JH, Zhang X (2019) The polar amplification model intercomparison project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification. Geosci Model Dev 12(3):1139–1164

    Article  Google Scholar 

  33. Smith KL, Neely RR, Marsh DR, Polvani LM (2014) The specified chemistry whole atmosphere community climate model (SC-WACCM). J Adv Model Earth Syst 6(3):883–901

    Article  Google Scholar 

  34. Strong C, Davis RE (2008) Variability in the position and strength of winter jet stream cores related to northern hemisphere teleconnections. J Clim 21(3):584–592

    Article  Google Scholar 

  35. Sun L, Deser C, Tomas RA (2015) Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J Clim 28(19):7824–7845. https://doi.org/10.1175/JCLI-D-15-0169.1

    Article  Google Scholar 

  36. Swain DL, Singh D, Horton DE, Mankin JS, Ballard TC, Diffenbaugh NS (2017) Remote linkages to anomalous winter atmospheric ridging over the northeastern pacific: remote linkages to pacific high pressure. J Geophys Res D Atmos 122(22):12194–12209

    Article  Google Scholar 

  37. Swart NC, Cole JNS, Kharin VV, Lazare M, Scinocca JF, Gillett NP, Anstey J, Arora V, Christian JR, Hanna S, Jiao Y, Lee WG, Majaess F, Saenko OA, Seiler C, Seinen C, Shao A, Sigmond M, Solheim L, Salzen Kv, Yang D, Winter B (2019) The canadian earth system model version 5 (CanESM5.0.3). Geosci Model Dev 12(11):4823–4873

    Article  Google Scholar 

  38. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  39. Teng H, Branstator G (2017) Causes of extreme ridges that induce california droughts. J Clim 30(4):1477–1492

    Article  Google Scholar 

  40. Walters D, Baran AJ, Boutle I, Brooks M, Earnshaw P, Edwards J, Furtado K, Hill P, Lock A, Manners J, Morcrette C, Mulcahy J, Sanchez C, Smith C, Stratton R, Tennant W, Tomassini L, Van Weverberg K, Vosper S, Willett M, Browse J, Bushell A, Carslaw K, Dalvi M, Essery R, Gedney N, Hardiman S, Johnson B, Johnson C, Jones A, Jones C, Mann G, Milton S, Rumbold H, Sellar A, Ujiie M, Whitall M, Williams K, Zerroukat M (2019) The met office unified model global atmosphere 7.0/7.1 and JULES global land 7.0 configurations. Geosci Model Dev 12(5):1909–1963

    Article  Google Scholar 

  41. Wang SY, Hipps L, Gillies RR, Yoon JH (2015a) Probable causes of the abnormal ridge accompanying the 2013–2014 california drought: ENSO precursor and anthropogenic warming footprint. Geophys Res Lett 41:3220–3226

  42. Wang SYS, Huang WR, Yoon JH (2015b) The north american winter ‘dipole’and extremes activity: a CMIP5 assessment. Atmos Sci Lett 16(3):338–345

    Article  Google Scholar 

  43. Wang SYS, Yoon JH, Becker E, Gillies R (2017) California from drought to deluge. Nat Clim Change 7(7):465–468

    Article  Google Scholar 

  44. Wilks DS (2016) ”The stippling shows statistically significant grid points”: how research results are routinely overstated and overinterpreted, and what to do about it. Bull Am Meteorol Soc. https://doi.org/10.1175/BAMS-D-15-00267.1

    Article  Google Scholar 

  45. Woollings T, Blackburn M (2012) The north Atlantic jet stream under climate change and its relation to the NAO and EA patterns. J Clim 25:886–902. https://doi.org/10.1175/JCLI-D-11-00087.1

    Article  Google Scholar 

  46. Wu Y, Simpson IR, Seager R (2019) Intermodel spread in the northern hemisphere stratospheric polar vortex response to climate change in the CMIP5 models. Geophys Res Lett 46(22):13290–13298

    Article  Google Scholar 

  47. Zappa G, Pithan F, Shepherd TG (2018) Multimodel evidence for an atmospheric circulation response to arctic sea ice loss in the CMIP5 future projections. Geophys Res Lett 45(2):1011–1019

    Article  Google Scholar 

  48. Zhang P, Wu Y, Simpson IR, Smith KL, Zhang X, De B (2018) A stratospheric pathway linking a colder siberia to Barents-Kara sea sea ice loss. Sci Adv 4(7):eaat6025

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Lantao Sun at Colorado State University for the use of the CESM2 data. BR and EAB are supported by the Climate and Large-scale Dynamics Program of the National Science Foundation under Grant AGS-1545675, and EAB is also supported under Grant AGS-1749261. RE is supported by the Met Office Hadley Centre Climate Programme funded by BEIS and Defra and also supported by APPLICATE (European Union Horizon 2020 research and innovation program, Grant Number 727862).YP is supported by the National Science Foundation Grant AGS-1624038 and the Department of Energy Grant DE-SC0019407.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bryn Ronalds.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 20,470 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ronalds, B., Barnes, E.A., Eade, R. et al. North Pacific zonal wind response to sea ice loss in the Polar Amplification Model Intercomparison Project and its downstream implications. Clim Dyn 55, 1779–1792 (2020). https://doi.org/10.1007/s00382-020-05352-w

Download citation

Keywords

  • Atmospheric circulation
  • Arctic amplification
  • Jet stream variability