Skip to main content

Advertisement

Log in

Stratospheric water vapor feedback and its climate impacts in the coupled atmosphere–ocean Goddard Earth Observing System Chemistry-Climate Model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The stratospheric water vapor feedbacks on climate for abrupt CO2 quadrupling are investigated with the coupled atmosphere–ocean Goddard Earth Observing System Chemistry-Climate model. A feedback suppression method is used to quantify the stratospheric water vapor climate feedback parameter and the impacts of stratospheric water vapor increases on temperature and circulation. It is found that increases in stratospheric water vapor change the model’s net climate feedback parameter by 0.11 W m−2 K−1, contributing to 0.5 K, or 10%, of the global-mean surface warming under abrupt CO2 quadrupling. Stratospheric water vapor increases lead to significant impacts on stratospheric temperature and dynamics. The increases induce stratospheric dynamical changes that strongly modify stratospheric cooling patterns. About 30% of the acceleration of the stratospheric Brewer-Dobson circulation under 4 × CO2 is attributed to the stratospheric water vapor increases. In the troposphere, the stratospheric water vapor feedback plays a role in Arctic amplification and is responsible for 14% of the Arctic warming. It also affects tropospheric circulation, causing greater poleward shift of the northern hemisphere tropospheric midlatitude jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The simulations used in this study are stored in the data storage facility of NASA Center for Climate Simulation and are fully available upon request to F. L. Code availability: The code used to analyze the model data is available upon request to F. L.

References

  • Austin J, Wilson J, Li F, Vomel H (2007) Evolution of water vapor concentrations and stratospheric age of air in coupled chemistry-climate model simulations. J Atmos Sci 64:905–921

    Article  Google Scholar 

  • Banerjee A, Chiodo G, Previdi M, Ponater P, Conley AJ, Polvani LM (2019) Stratospheric water vapor: an important climate feedback. Clim Dyn 53:1697–1710

    Article  Google Scholar 

  • Bony S, Colman R, Kattsov VM, Allan RP, Bretherton CS, Dufresne JL, Hall A, Hallegatte S, Holland MM, Ingram W et al (2006) How well do we understand and evaluate climate change feedback processes? J Clim 19(15):3445–3482

    Article  Google Scholar 

  • Butchart N et al (2006) Simulations of anthropogenic change in the strength of the Brewer-Dobson circulation. Clim Dyn 27:727–741

    Article  Google Scholar 

  • Chen G, Plumb RA, Lu J (2010) Sensitivities of zonal mean atmospheric circulation to SST warming in an aqua-planet model. Geophys Res Lett 37:L1270. https://doi.org/10.1029/2010GL043473

    Article  Google Scholar 

  • Dessler A, Schoeberl M, Wang T, Davis S, Rosenlof K (2013) Stratospheric water vapor feedback. Proc Natl Acad Sci USA 110(45):18087–18091

    Article  Google Scholar 

  • Fels S, Mahlman J, Schwarzkopf M, Sinclair R (1980) Stratospheric sensitivity to perturbations in ozone and carbon dioxide: radiative and dynamical response. J Atmos Sci 37(10):2265–2297

    Article  Google Scholar 

  • Forster PMD, Shine KP (2002) Assessing the climate impacts of trends in stratospheric water vapor. Geophys Res Lett 2002:29. https://doi.org/10.1029/2001GL013909

    Article  Google Scholar 

  • Fueglistaler S, Haynes PH (2005) Control of interannual and longer term variability of stratospheric water vapor. J Geophys Res 110:D24108. https://doi.org/10.1029/2005JD006019

    Article  Google Scholar 

  • Gettelman A et al (2010) Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends. J Geophys Res 115:D00M08. https://doi.org/10.1029/2009JD013638

    Article  Google Scholar 

  • Graversen RG, Wang M (2009) Polar amplification in a coupled climate model with locked albedo. Clim Dyn 33:629–643. https://doi.org/10.1007/s00382-009-0535-6

    Article  Google Scholar 

  • Gregory JM, Ingram WJ, Palmer MA, Jones GS, Stott PA, Thorpe RB, Lowe JA, Johns TC, Williams KD (2004) A new method for diagnosing radiative forcing and climate sensitivity. Geophys Res Lett 31:L03205. https://doi.org/10.1029/2003GL018747

    Article  Google Scholar 

  • Griffies SM (2012) Elements of the modular ocean model (MOM) (2012 Release). In: GFDL Ocean Group Technical Report No. 7

  • Hall A, Manabe S (1999) The role of water vapour feedback in unperturbed climate variability and global warming. J Clim 12:2327–2346

    Article  Google Scholar 

  • Huang Y, Zhang M, Xia Y, Hu Y, Son SW (2016) Is there a stratospheric radiative feedback in global warming simulations? Clim Dyn 46(1–2):177–186

    Article  Google Scholar 

  • Li F, Austin J, Wilson J (2008) The strength of the Brewer-Dobson circulation in a changing climate: coupled chemistry-climate simulations. J Clim 21(40):57

    Google Scholar 

  • Li F, Vikhliaev YV, Newman PA, Pawson S, Perlwitz J, Waugh DW, Douglass AR (2016) Impacts of interactive stratospheric chemistry on Antarctic and Southern Ocean climate change in the Goddard Earth Observing System, version 5 (GEOS-5). J Clim 29(9):3199–3218. https://doi.org/10.1175/JCLI-D-15-0572.1

    Article  Google Scholar 

  • Maycock AC, Shie KP, Joshi MM (2011) The temperature response to stratospheric water vapor changes. Q J R Meteorol Soc 137:1070–1082. https://doi.org/10.1002/qj.822

    Article  Google Scholar 

  • Maycock AC, Joshi MM, Shine KP, Scaife AA (2013) The circulation response to idealized changes in stratospheric water vapor. J Atmos Sci 26:545–561

    Google Scholar 

  • Oinas V, Lacis AA, Rind D, Shindell DT, Hansen JE (2001) Radiative cooling by stratospheric water vapor: big differences in GCM results. Geophy Res Lett 28(14):2791–2794

    Article  Google Scholar 

  • Solomon S, Rosenlof KH, Portmann RW, Daniel JS, Davis SM, Sanford TJ, Gian-Kasper P (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327:1219–1223. https://doi.org/10.1126/science.1182488

    Article  Google Scholar 

  • Stuber N, Ponater M, Sausen R (2001) Is the climate sensitivity to ozone perturbations enhanced by stratospheric water vapor feedback? Geophys Res Lett 28(15):2887–2890

    Article  Google Scholar 

  • Tandon NF, Polvani LM, Davis SM (2011) The response of the tropospheric circulation to water-vapor like forcing in the stratosphere. J Clim 24:5713–5720. https://doi.org/10.1175/JCLI-D-1100069.1

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by NASA’s Atmospheric Composition Modeling and Analysis Program (ACMAP) under Grant NNX17AF62G and Modeling, Analysis and Prediction Program (MAP) under Grant 80NSSC17K0288. We acknowledge NASA Center for Climate Simulation (NCCS) for providing computation resources for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Li.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Newman, P. Stratospheric water vapor feedback and its climate impacts in the coupled atmosphere–ocean Goddard Earth Observing System Chemistry-Climate Model. Clim Dyn 55, 1585–1595 (2020). https://doi.org/10.1007/s00382-020-05348-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05348-6

Keywords

Navigation