Skip to main content

Advertisement

Log in

Holocene negative coupling of summer temperature and moisture availability over southeastern arid Central Asia

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Holocene moisture–temperature correlation on varying spatial–temporal scales in arid Central Asia (ACA) is still controversial. It has been widely reported that ACA experienced multi-centennial alternations between warm/dry and cold/wet climates over the past two millennia. However, less attention has focused on orbital-scale moisture–temperature relationship at a regional scale across ACA. Here, we contribute a framework including a set of quantitative algorithms to acquire reliable pollen-based climatic reconstructions. We apply this methodology to a new pollen record from a wetland in northern Xinjiang (southeastern ACA) for quantitative reconstructions of moisture availability (actual/potential evapotranspiration ratio, AET/PET) and summer temperature (mean temperature of the warmest month, MTWA) over circa the last 10,300 years. We select AET/PET and MTWA because they are evaluated to be most statistically independent and ecologically significant. The effect of differing spatial extents of calibration-sets on model performance is tested to determine the optimal extent. We critically assess the reliability of all reconstructions through calculations of statistical significance, analogue quality and goodness-of-fit statistics. Our final reconstructions are statistically significant with independent features of AET/PET and MTWA, showing an increasing (declining) trend of Holocene moisture (temperature). This anti-phase pattern is consistent with other records and model simulations across southeastern ACA. The data-model consistency postulates that (i) the glacier meltwater from Tien Shan (‘Water Tower of Central Asia’) is crucial to support major streamflow and watersheds over ACA, and (ii) the Holocene wetting trend may be determined by the interacting effects between decreased summer temperature and increased winter precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aichner B, Feakins SJ, Lee JE, Herzschuh U, Liu X (2015) High-resolution leaf wax carbon and hydrogen isotopic record of the late Holocene paleoclimate in arid Central Asia. Clim Past 11:619–633

    Google Scholar 

  • Aizen VB, Aizen EM, Joswiak DR, Fujita K, Takeuchi N, Nikitin SA (2006) Climatic and atmospheric circulation pattern variability from ice–core isotope/geochemistry records (Altai, Tien Shan and Tibet). Ann Glaciol 43:49–60

    Google Scholar 

  • An CB, Lu YB, Zhao JJ, Tao SC, Dong WM, Li H, Jin M, Wang ZL (2012) A high–resolution record of Holocene environmental and climatic changes from Lake Balikun (Xinjiang, China): implications for central Asia. Holocene 22:43–52

    Google Scholar 

  • Barboni D, Harrison SP, Bartlein PJ, Jalut G, New M, Prentice IC, Sanchez-Goñi MF, Spessa A, Davis B, Stevenson AC (2004) Relationships between plant traits and climate in the Mediterranean region: a pollen data analysis. J Vegetat Sci 15:635–646

    Google Scholar 

  • Bartlein PJ, Harrison SP, Brewer S, Connor S, Davis BAS, Gajewski K, Guiot J, Harrison-Prentice TI, Henderson A, Peyron O, Prentice IC, Scholze M, Seppä H, Shuman B, Sugita S, Thompson RS, Viau AE, Williams J, Wu H (2011) Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Clim Dyn 37:775–802

    Google Scholar 

  • Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10:297–317

    Google Scholar 

  • Birks HJB (1980) Modern pollen assemblages and vegetational history of the moraines of the Klutlan Glacier and Its surroundings, Yukon Territory, Canada. Quat Res 14:101–129

    Google Scholar 

  • Birks HJB (1998) Numerical tools in palaeolimnology: progress, potentialities, and problems. J Paleolimnol 20:307–332

    Google Scholar 

  • Birks HJB, Seppä H (2004) Pollen–based reconstructions of late-Quaternary climate in Europe–progress, problems, and pitfalls. Acta Palaeobot 44:317–334

    Google Scholar 

  • Birks HJB, Line JM, Juggins S, Stevenson AC, ter Braak CJF (1990) Diatoms and pH reconstruction. Philos Trans R Soc Lond B 327:263–278

    Google Scholar 

  • Birks HH, Battarbee RW, Birks HJB (2000) The development of the aquatic ecosystem at Kråkenes Lake, western Norway, during the early Holocene and late glacial—a synthesis. J Paleolimnol 23:91–114

    Google Scholar 

  • Birks HJB, Heiri O, Seppä H, Bjune AE (2010) Strengths and weaknesses of quantitative climate reconstructions based on late Quaternary biological proxies. Open Ecol J 3:68–110

    Google Scholar 

  • Blaauw M, Christen JA (2011) Flexible paleoclimate age–depth models using an autoregressive gamma process. Bayesian Anal 6:457–474

    Google Scholar 

  • Braconnot P, Harrison S, Kageyama M, Bartlein J, Masson V, Abe Ouchi A, Otto-Bliesner B, Zhao Y (2012) Evaluation of climate models using palaeoclimatic data. Nat Clim Change 2:417–424

    Google Scholar 

  • Cai YJ, Chiang JCH, Breitenbach SFM, Tan LC, Cheng H, Edwards RL, An ZS (2017) Holocene moisture changes in western China, Central Asia, inferred from stalagmites. Quat Sci Rev 158:15–28

    Google Scholar 

  • Cao X, Ni J, Herzschuh U, Wang YB, Zhao Y (2013) A late quaternary pollen dataset from eastern continental Asia for vegetation and climate reconstructions: set up and evaluation. Rev Palaeobot Palynol 194:21–37

    Google Scholar 

  • Cao X, Tian F, Telford RJ, Ni J, Xu Q, Chen F, Liu X, Stebich M, Zhao Y, Herzschuh U (2017) Impacts of the spatial extent of pollen–climate calibration-set on the absolute values, range and trends of reconstructed Holocene precipitation. Quat Sci Rev 178:37–53

    Google Scholar 

  • Cao X, Tian F, Ding W (2018) Improving the quality of pollen–climate calibration–sets is the primary step for ensuring reliable climate reconstructions. Sci Bull 63:1317–1318

    Google Scholar 

  • Caves JK, Winnick MJ, Graham SA, Sjostrom DJ, Mulch A, Chamberlain CP (2015) Role of the westerlies in Central Asia climate over the Cenozoic. Earth Planet Sci Lett 428:33–43

    Google Scholar 

  • Chen FH, Huang XZ, Zhang JW, Holmes JA, Chen JH (2006) Humid little ice age in and central Asia documented by Bosten Lake, Xinjiang, China. Sci China Ser D 49:1280–1290

    Google Scholar 

  • Chen FH, Yu ZC, Yang ML, Ito E, Wang SM, Madsen DB, Huang XZ, Zhao Y, Sato T, Birks HJB, Boomer I, Chen JH, An CB, Wünnemann B (2008) Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev 27:351–364

    Google Scholar 

  • Chen FH, Chen JH, Holmes J, Boomer I, Austin P, Gates JB, Wang NL, Brooks SJ, Zhang JW (2010) Moisture changes over the last millennium in arid central Asia: a review, synthesis and comparison with monsoon region. Quat Sci Rev 29:1055–1068

    Google Scholar 

  • Chen FH, Chen XM, Chen JH, Zhou AF, Wu D, Tang LY, Zhang XJ, Huang XZ, Yu JQ (2014) Holocene vegetation history, precipitation change and Indian summer monsoon evolution documented by Xingyun Lake, Southwest China. J Quat Sci 29:661–674

    Google Scholar 

  • Chen JH, Chen FH, Feng S, Huang W, Liu J, Zhou A (2015) Hydroclimatic changes in China and surroundings during the medieval climate anomaly and little ice age: spatial patterns and possible mechanisms. Quat Sci Rev 107:98–111

    Google Scholar 

  • Chen FH, Jia J, Chen JH, Li GQ, Zhang XJ, Xie HC, Xia DS, Huang W, An CB (2016) A persistent Holocene wetting trend in arid Central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess–paleosol sequences in Xinjiang, China. Quat Sci Rev 146:134–146

    Google Scholar 

  • Chen JH, Lv FY, Huang XZ, Birks HJB, Telford RJ, Zhang SR, Xu QH, ZhaoY WHP, Zhou AF, Huang W, Liu JB, Wei GY (2017) A novel procedure for pollen-based quantitative paleoclimate reconstructions and its application in China. Sci China Earth Sci 60:2059–2066

    Google Scholar 

  • Chen FH, Chen JH, Huang W, Chen SQ, Huang XZ, Jin LY, Jia J, Zhang XJ, An CB, Zhang JW, Zhao Y, Yu ZC, Zhang RH, Liu JB, Zhou AF, Feng S (2019) Westerlies Asia and monsoonal Asia: spatiotemporal differences in climate change and possible mechanisms on decadal to sub–orbital timescales. Earth Sci Rev 192:337–354

    Google Scholar 

  • Cheng H, Zhang PZ, Spötl C, Edwards RL, Cai YJ, Zhang DZ, Sang WC, Tan M, An ZS (2012) The climatic cyclicity in semiarid–arid Central Asia over the past 500,000 years. Geophys Res Lett 39:L01705

    Google Scholar 

  • Davis BAS, Brewer S, Stevenson AC, Guiot J, Contributors D (2003) The temperature of Europe during the Holocene reconstructed from pollen data. Quat Sci Rev 22:1701–1716

    Google Scholar 

  • Development Core Team R (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ding W, Xu Q, Fu T, Ma C, Tarasov PE (2019) Heterogeneous vegetation sensitivity at local and regional scales: Implications for pollen-based climate reconstruction. Quatern Int 516:149–159

    Google Scholar 

  • Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kühn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628

    Google Scholar 

  • Faegri K, Iversen J (1989) Textbook of pollen analysis. Wiley, Chichester

    Google Scholar 

  • Feng ZD, Wu HN, Zhang CJ, Ran M, Sun AZ (2013) Bioclimatic change of the past 2500 years within the Balkhash Basin, eastern Kazakhstan, Central Asia. Quat Int 311:63–70

    Google Scholar 

  • Feng ZD, Sun AZ, Abdusalih N, Ran M, Kurban A, Lan B, Zhang DL, Yang Y (2017) Vegetation changes and associated climatic changes in the southern Altai Mountains within China during the Holocene. Holocene 27:683–693

    Google Scholar 

  • Finsinger W, Lane CS, van den Brand GJ, Wagner-Cremer F, Blockley SPE, Lotter AF (2011) The Lateglacial Quercus expansion in the southern European Alps: rapid vegetation response to a late Allerød climate warming? J Quat Sci 26:694–702

    Google Scholar 

  • Fréchette B, de Vernal A (2013) Evidence for large-amplitude biome and climate changes in Atlantic Canada during the last interglacial and mid-Wisconsinan periods. Quat Res 79:242–255

    Google Scholar 

  • Furrer R, Nychka D, Sain S (2013) Fields: tools for spatial data. version 6.8. Available at: https://cran.r-project.org/web/packages/fields/index.html. Accessed 20 Jan 2020

  • Grimm E (2011) In: Tilia Software 1.7.14. Research and collection center springfield, Illinois

  • Hagg W, Mayer C, Lambrecht A, Helm A (2008) Sub-debris melt rates on southern Inylchek glacier, Central Tien Shan. Geogr Ann A90:55–63

    Google Scholar 

  • Harrison SP, Yu G, Tarasov PE (1996) Late Quaternary lake-level record fromnorthern Eurasia. Quat Res 45:138–159

    Google Scholar 

  • Harrison SP, Prentice IC, Barboni D, Kohfeld KE, Ni J, Sutra JP (2010) Ecophysiological and bioclimatic foundations for a global plant functional classification. J Veg Sci 21:300–317

    Google Scholar 

  • Herbert AV, Harrison SP (2016) Evaluation of a modern-analogue methodology for reconstructing Australian palaeoclimate from pollen. Rev Palaeobot Palynol 226:65–77

    Google Scholar 

  • Herzschuh U, Birks HJB, Mischke S, Zhang C, Böhner J (2010) A modern pollen–climate calibration set based on lake sediments from the Tibetan Plateau and its application to a Late Quaternary pollen record from the Qilian Mountains. J Biogeogr 37:752–766

    Google Scholar 

  • Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58

    Google Scholar 

  • Huang X, Oberhänsli H, Von Suchodoletz H, Sorrel P (2011) Dust deposition in the Aral Sea: implications for changes in atmospheric circulation in central Asia during the past 2000 years. Quat Sci Rev 30:3661–3674

    Google Scholar 

  • Huang X, Peng W, Rudaya N, Grimm EC, Chen X, Cao X, Zhang J, Pan XD, Liu S, Chen C, Chen F (2018) Holocene vegetation and climate dynamics in the Altai Mountains and surrounding areas. Geophys Res Lett 45:6628–6636

    Google Scholar 

  • Huntley B (2012) Reconstructing palaeoclimates from biological proxies: Some often overlooked sources of uncertainty. Quat Sci Rev 31:1–16

    Google Scholar 

  • Huntley B, Berry PM, Cramer W, McDonald AP (1995) Modelling present and potential future ranges of some European higher plants using climate response surfaces. J Biogeogr 22:967–1001

    Google Scholar 

  • Jackson ST, Overpeck JT (2000) Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26:194–220

    Google Scholar 

  • Jia J, Liu H, Gao F, Xia D (2018) Variations in the westerlies in central Asia since 16 ka recorded by a loess section from the Tien Shan Mountains. Palaeogeogr Palaeoclimatol Palaeoecol 504:156–161

    Google Scholar 

  • Jiang WY, Guo ZT, Sun XJ, Wu HB, Chu GQ, Yuan BY, Hatte C, Guiot J (2006) Reconstruction of climate and vegetation changes of Lake Bayanchagan (Inner Mongolia): Holocene variability of the East Asian monsoon. Quat Res 65:411–420

    Google Scholar 

  • Jiang QF, Ji JF, Shen J, Matsumoto R, Tong GB, Qian P, Ren XM, Yan DZ (2013) Holocene vegetational and climatic variation in westerly–dominated areas of Central Asia inferred from the Sayram Lake in northern Xinjiang, China. Sci China Earth Sci 56:339–353

    Google Scholar 

  • Jin LY, Chen FH, Morrill C, Otto-Bliesner B, Rosenbloom N (2012) Causes of early Holocene desertification in arid Central Asia. Clim Dyn 38:1577–1591

    Google Scholar 

  • Juggins S (2012) Rioja: analysis of quaternary science data. Version 0.7–3. https://cran.rproject.org/web/packages/rioja/index.html. Accessed 3 Feb 2020

  • Juggins S (2013) Quantitative reconstructions in palaeolimnology: new paradigm or sick science? Quat Sci Rev 64:20–32

    Google Scholar 

  • Juggins S, Birks HJB (2012) Chapter 14 Quantitative environmental reconstructions from biological data. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments. Data handling and numerical techniques 5. Springer, Dordrecht

    Google Scholar 

  • Kaplan JO, Bigelow NH, Prentice IC, Harrison SP, Bartlein PJ, Christensen TR, Cramer W, Matveyeva NV, McGuire AD, Murray DF, Razzhivin VY, Smith B, Walker DA, Anderson PM, Andreev AA, Brubaker LB, Edwards ME, Lozhkin AV (2003) Climate change and arctic ecosystems II: Modeling, paleodata–model comparisons, and future projections. J Geophys Res 108:8171

    Google Scholar 

  • Klemm J, Herzschuh U, Pisaric MF, Telford RJ, Heim B, Pestryakova LA (2013) A pollen-climate transfer function from the tundra and taiga vegetation in Arctic Siberia and its applicability to a Holocene record. Palaeogeogr Palaeoclimatol Palaeoecol 386:702–713

    Google Scholar 

  • Lai JS (2019) rdacca.hp: Hierarchical partitioning for redundancy analysis and canonical correspondence analysis. R package version 0.1.0. https://github.com/laijiangshan/rdacca.hp. Accessed 26 Feb 2020

  • Larocque I, Hall RI, Grah E (2001) Chironomids as indicators of climate change: a 100–lake training set from a subarctic region of northern Sweden (Lapland). J Paleolimnol 26:307–322

    Google Scholar 

  • Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long term numerical solution for the insolation quantities of the Earth. Astron Astrophys 428:261–285

    Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  • Li Y, Li Y (2014) Topographic and geometric controls on glacier changes in the central Tien Shan, China, since the Little Ice Age. Ann Glaciol 55:177–186

    Google Scholar 

  • Li Y, Morrill C (2010) Multiple factors causing Holocene lake–level change in monsoonal and arid central Asia as identified by model experiments. Clim Dyn 35:1119–1132

    Google Scholar 

  • Li YC, Xu QH, Liu JS, Yang XL, Nakagawa T (2007) A transfer–function model developed from an extensive surface-pollen data set in northern China and its potential for palaeoclimate reconstructions. Holocene 17:897–905

    Google Scholar 

  • Li X, Zhao K, Dodson J, Zhou X (2011) Moisture dynamics in central Asia for the last 15 kyr: new evidence from Yili Valley, Xinjiang, NW China. Quat Sci Rev 30:3457–3466

    Google Scholar 

  • Li YM, Yang ZJ, Zhang Y, Yang QH, Liu LJ, Wei ZB, Wang CM, Kong ZC, Zhao L (2014) Surface pollen assemblages and vegetation relationships in the Bortala River Basin of Xinjiang, China. Sci Geogr Sin 34:1518–1525 (in Chinese)

    Google Scholar 

  • Li JY, Xu QH, Zheng Z, Lu HY, Luo YL, Li YC, Li CH, Seppa H (2015) Assessing the importance of climate variables for the spatial distribution of modern pollen data in China. Quat Res 83:287–297

    Google Scholar 

  • Li JY et al (2016) East Asian summer monsoon precipitation variations in China over the last 9500 years: a comparison of pollen-based reconstructions and model simulations. Holocene 26:592–602

    Google Scholar 

  • Li JY, Dodson J, Yan H, Cheng B, Zhang X, Xu QH, Ni J, Lu FY (2017) Quantitative precipitation estimates for the northeastern Qinghai-Tibetan plateau over the last 18,000 years. J Geophys Res Atmos 122:5132–5143

    Google Scholar 

  • Li JY, Dodson J, Yan H, Wang W, Innes JB, Zong Y, Zhang XJ, Xu QH, Ni J, Lu FY (2018) Quantitative Holocene climatic reconstructions for the lower Yangtze region of China. Clim Dyn 50:1101–1113

    Google Scholar 

  • Liu Y (2016) Analysis on the protection and restoration of Bortala River National Wetland Park in Wenquan County, Xinjiang. Environ Sustain Dev 41:198–199 (in Chinese)

    Google Scholar 

  • Liu XQ, Herzschuh U, Shen J, Jiang QF, Xiao XY (2008) Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China. Quat Res 70:412–425

    Google Scholar 

  • Long H, Shen J, Chen J, Tsukamoto S, Yang L, Cheng H, Frechen M (2017) Holocene moisture variations over the arid central Asia revealed by a comprehensive sand-dune record from the central Tian Shan, NW China. Quat Sci Rev 174:13–32

    Google Scholar 

  • Lotter AF, Birks HJB, Hofmann W, Marchetto A (1997) Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps I. Climate. J Paleolimnol 18:395–420

    Google Scholar 

  • Lu HY, Wu NQ, Liu KB, Zhu LP, Yang XD, Yao TD, Wang L, Li QA, Liu XQ, Shen CM, Li XQ, Tong GB, Jiang H (2011) Modern pollen distributions in Qinghai-Tibetan Plateau and the development of transfer functions for reconstructing Holocene environmental changes. Quat Sci Rev 30:947–966

    Google Scholar 

  • Luo CX, Zheng Z, Tarasov P, Nakagawa T, Pan AD, Xu QH, Lu HY, Huang KY (2010) A potential of pollen–based climate reconstruction using a modern pollen–climate dataset from arid northern and western China. Rev Palaeobot Palynol 160:111–125

    Google Scholar 

  • Luoto TP (2009) A Finnish chironomid- and chaoborid-based inference model for reconstructing past lake levels. Quat Sci Rev 28:1481–1489

    Google Scholar 

  • Minckley TA, Bartlein PJ, Whitlock C, Shuman BN, Williams JW, Davis OK (2008) Associations among modern pollen, vegetation, and climate in western North America. Quat Sci Rev 27:1962–1991

    Google Scholar 

  • Mod HK, Scherrer D, Luoto M, Guisan A (2016) What we use is not what we know: environmental predictors in plant distribution models. J Veg Sci 27:1308–1322

    Google Scholar 

  • Ni J, Sykes MT, Prentice IC, Cramer W (2000) Modelling the vegetation of China using the process–based equilibrium terrestrial biosphere model BIOME3. Glob Ecol Biogeogr 9:463–479

    Google Scholar 

  • O'Brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41:673–690

    Google Scholar 

  • Oksanen J, Blanchet F G, Kindt R, et al (2010) Vegan: community ecology package. R package version 1.17–4[J]. URL: https://CRAN.R-project.org/package=vegan. Accessed 10 Jan 2020

  • Olsen J, Anderson NJ, Knudsen MF (2012) Variability of the north Atlantic oscillation over the past 5,200 years. Nat Geosci 5:808–812

    Google Scholar 

  • Overpeck JT, Webb T, Prentice IC (1985) Quantitative interpretation of fossil pollen spectra—dissimilarity coefficients and the method of modern analogs. Quat Res 23:87–108

    Google Scholar 

  • Payne RJ, Babeshko KV, van Bellen S, Jeffrey J, Blackford JJ, Booth RK, Charman DJ, Ellershaw MR, Gilbert D, Hughes PM, Jassey VEJ, Lamentowicz Ł, Lamentowicz M, Malysheva EA, Mauquoy D, Mazei Y, Mitchell EAD, Swindles GT, Tsyganov AN, Turner TE, Telford RJ (2016) Significance testing testate amoeba water table reconstructions. Quat Sci Rev 138:131–135

    Google Scholar 

  • Pederson N, Hessl AE, Baatarbileg N, Anchukaitis KJ, Di Cosmo N (2014) Pluvials, droughts, the Mongol Empire, and modern Mongolia. Proc Natl Acad Sci USA 111:4375–4379

    Google Scholar 

  • Piao SL, Fang JY, Zhou LM, Zhu B, Tan K, Tao S (2005) Changes in vegetation net primary productivity from 1982 to 1999 in China. Glob Biogeochem Cycles 19:GB2027

    Google Scholar 

  • Prentice IC (1980) Multidimensional scaling as a research tool in Quaternary palynology: a review of theory and methods. Rev Palaeobot Palynol 31:71–104

    Google Scholar 

  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134

    Google Scholar 

  • Prentice IC, Sykes MT, Cramer W (1993) A simulation model for the transient effects of climate change on forest landscapes. Ecol Model 65:51–70

    Google Scholar 

  • Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40:1002

    Google Scholar 

  • Ran M, Feng Z (2013) Holocene moisture variations across China and driving mechanisms: a synthesis of climatic records. Quat Int 313:179–193

    Google Scholar 

  • Ran M, Zhang C, Feng Z (2015) Climatic and hydrological variations during the past 8000 years in northern Xinjiang of China and the associated mechanisms. Quat Int 358:21–34

    Google Scholar 

  • Raspopov OM, Dergachev VA, Esperc J, Kozyreva OV, Frank D, Ogurtsov M, Kolstrom T, Shao X (2008) The influence of the de Vries (similar to 200–year) solar cycle on climate variations: results from the Central Asian Mountains and their global link. Palaeogeogr Palaeoclimatol Palaeoecol 259:6–16

    Google Scholar 

  • Rehfeld K, Trachsel M, Telford RJ, Laepple T (2016) Assessing performance and seasonal bias of pollen–based climate reconstructions in a perfect model world. Clim Past 12:2255–2270

    Google Scholar 

  • Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey BC, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatte C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon Age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887

    Google Scholar 

  • Rhodes TE, Gasse F, Lin RF, Fontes JC, Wei KQ, Bertrand P, Gibert E, Melieres F, Tucholka P, Wang ZX, Cheng ZY (1996) A late Pleistocene-Holocene lacustrine record from Lake Manas, Zunggar (northern Xinjiang, western China). Palaeogeogr Palaeoclimatol Palaeoecol 120:105–121

    Google Scholar 

  • Rudaya N, Tarasov P, Dorofeyuk N, Solovieva N, Kalugin I, Andrew A, Dryin A, Diekmann B, Riedel F, Tserendash N, Wagnere M (2009) Holocene environments and climate in the Mongolian Altai reconstructed from the Hoton-Nur pollen and diatom records, a step towards better understanding climate dynamics in Central Asia. Quat Sci Rev 28:540–554

    Google Scholar 

  • Rupper S, Roe G, Gillespie A (2009) Spatial patterns of Holocene glacier advance and retreat in Central Asia. Quat Res 72:337–346

    Google Scholar 

  • Salonen JS, Helmens KF, Seppä H, Birks HJB (2013) Pollen–based palaeoclimate reconstructions over long glacial–interglacial timescales: methodological tests based on the Holocene and MIS 5d–c deposits at Sokli, northern Finland. J Quat Sci 28:271–282

    Google Scholar 

  • Salonen JS, Luoto M, Alenius T, Heikkilä M, Seppä H, Telford RJ, Birks HJB (2014) Reconstructing palaeoclimatic variables from fossil pollen using boosted regression trees: comparison and synthesis with other quantitative reconstruction methods. Quat Sci Rev 88:69–81

    Google Scholar 

  • Salonen JS, Korpela M, Williams JW, Luoto M (2019) Machine–learning based reconstructions of primary and secondary climate variables from North American and European fossil pollen data. Sci Rep 9:1–13

    Google Scholar 

  • Seddon AWR, Macias-Fauria M, Long PR et al (2016) Sensitivity of global terrestrial ecosystems to climate variability. Nature 531:229–232

    Google Scholar 

  • Seppä H, Bennett KD (2003) Quaternary pollen analysis: recent progress in palaeoecology and palaeoclimatology. Prog Phys Geogr 27:548–579

    Google Scholar 

  • Shen CM, Liu KB, Tang LY, Overpeck JT (2006) Quantitative relationships between modern pollen rain and climate in the Tibetan Plateau. Rev Palaeobot Palynol 140:61–77

    Google Scholar 

  • Simpson GL, Oksanen J (2009) Analogue: analogue and weighted averaging methods for palaeoecology. R package version 0.6–6. https://CRAN.R-project.org/package=analogue. Accessed 21 Feb 2020

  • Simpson GL, Shilland EM, Winterbottom JM, Keay J (2005) Defining reference conditions for acidified waters using a modern analogue approach. Environ Pollut 137:119–133

    Google Scholar 

  • Sorg A, Bolch T, Stoffel M, Solomina O, Beniston M (2012) Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat Clim Change 2:725–731

    Google Scholar 

  • Sun A, Feng Z, Ran M, Zhang C (2013) Pollen–recorded bioclimatic variations of the last ∼22,600 years retrieved from Achit Nuur core in the western Mongolian plateau. Quat Int 311:36–43

    Google Scholar 

  • Tao SC, An CB, Chen FH, Tang LY, Wang ZL, Lü YB, Li ZF, Zheng TM, Zhao JJ (2010) Pollen–inferred vegetation and environmental changes since 16.7 ka BP at Balikun Lake. Xinxiang Sci Bull 55:2449–2457

    Google Scholar 

  • Tarasov PE, Webb T III, Andreev AA et al (1998) Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. J Biogeogr 25:1029–1053

    Google Scholar 

  • Tarasov PE, Guiot J, Cheddadi R, Andreev AA, Bezusko LG, Blyakharchuk TA, Dorofeyuk NI, Filimonova LV, Volkova VS, Zernitskaya VP (1999) Climate in northern Eurasia 6000 years ago reconstructed from pollen data. Earth Planet Sci Lett 171:635–645

    Google Scholar 

  • Tarasov P, Demske D, Leipe C, Long T, Müller S, Hoelzmann P, Wagner M (2019) An 8500-year palynological record of vegetation, climate change and human activity in the Bosten Lake region of Northwest China. Palaeogeogr Palaeoclimatol Palaeoecol 516:166–178

    Google Scholar 

  • Telford RJ, Birks HJB (2009) Evaluation of transfer functions in spatially structured environments. Quat Sci Rev 28:1309–1316

    Google Scholar 

  • Telford RJ, Birks HJB (2011) A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages. Quat Sci Rev 30:1272–1278

    Google Scholar 

  • Telford R, Trachsel M (2015) Package ‘palaeoSig’ Significance tests for palaeoenvironmental reconstructions. Version 1:1–3

    Google Scholar 

  • Tian F, Herzschuh U, Telford RJ, Mischke S, Van der Meeren T, Krengel M, Richardson J (2014) A modern pollen–climate calibration set from central-western Mongolia and its application to a late glacial–Holocene record. J Biogeogr 41(10):1909–1922

    Google Scholar 

  • ter Braak CJF, Juggins S (1993) Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269:485–502

    Google Scholar 

  • ter Braak CJF, Šmilauer P (2012) Canoco reference manual and User's guide: software for ordination, version 5.0. Ithaca USA: Microcomputer Power

  • Unger-Shayesteh K, Vorogushyn S, Farinotti D, Gafurov A, Duethmann D, Mandychev A, Merz B (2013) What do we know about past changes in the water cycle of Central Asian headwaters? A review. Glob Planet Change 110:4–25

    Google Scholar 

  • Uno I, Eguchi K, Yumimoto K, Takemura T, Shimizu A, Uematsu M, Liu ZY, Wang ZF, Hara Y, Sugimoto N (2009) Asian dust transported one full circuit around the globe. Nat Geosci 2:557–560

    Google Scholar 

  • Wang W, Feng ZD (2013) Holocene moisture evolution across the Mongolian Plateau and its surrounding areas: a synthesis of climatic records. Earth Sci Rev 122:38–57

    Google Scholar 

  • Wang W, Zhang DL (2019) Holocene vegetation evolution and climatic dynamics inferred from an ombrotrophic peat sequence in the southern Altai Mountains within China. Glob Planet Change 179:10–22

    Google Scholar 

  • Wang H, Ni J, Prentice IC (2011) Sensitivity of potential natural vegetation in China to projected changes in temperature, precipitation and atmospheric CO2. Reg Environ Change 11:715–727

    Google Scholar 

  • Wang H, Prentice IC, Ni J (2012) Primary production in forests and grasslands of China: contrasting environmental responses of light– and water–use efficiency models. Biogeosciences 9:4689–4705

    Google Scholar 

  • Wang W, Feng Z, Ran M, Zhang C (2013) Holocene climate and vegetation changes inferred from pollen records of Lake Aibi, northern Xinjiang, China: a potential contribution to understanding of Holocene climate pattern in East-central Asia. Quat Int 311:54–62

    Google Scholar 

  • Wang H, Harrison SP, Prentice IC, Yang Y, Togashi HF, Wang M, Zhou S, Bai F, Ni J (2018) The China plant trait database: towards a comprehensive regional compilation of functional traits for land plants. Ecology 99:500

    Google Scholar 

  • Wen R, Xiao J, Chang Z, Zhai D, Xu Q, Li Y, Itoh S (2010) Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia, China. Boreas 39:262–272

    Google Scholar 

  • Williams JW, Shuman B (2008) Obtaining accurate and precise environmental reconstructions from the modern analog technique and North American surface pollen dataset. Quat Sci Rev 27:669–687

    Google Scholar 

  • Wolff C, Plessen B, Dudashvilli AS, Breitenbach SF, Cheng H, Edwards LR, Strecker MR (2017) Precipitation evolution of Central Asia during the last 5000 years. Holocene 27:142–154

    Google Scholar 

  • Woodward FI (1987) Climate and plant distribution. Cambridge University Press, Cambridge

    Google Scholar 

  • Wünnemann B, Mischke S, Chen F (2006) A Holocene sedimentary record from Bosten lake, China. Palaeogeogr Palaeoclimatol Palaeoecol 234:223–238

    Google Scholar 

  • Xu H, Lan J, Zhang G, Zhou X (2019) Arid central Asia saw mid–Holocene drought. Geology 47:255–258

    Google Scholar 

  • Yang B, Wang J, Braeuning A, Dong Z, Esper J (2009) Late Holocene climatic and environmental changes in arid central Asia. Quat Int 194:68–78

    Google Scholar 

  • Yang Y, Ran M, Sun A (2019) Pollen-recorded bioclimatic variations of the last ~ 2000 years retrieved from Bayan Nuur in the western Mongolian Plateau. Boreas. https://doi.org/10.1111/bor.12423.ISSN0300-9483

    Article  Google Scholar 

  • You N, Meng J, Zhu L (2018) Sensitivity and resilience of ecosystems to climate variability in the semi–arid to hyper–arid areas of Northern China: a case study in the Heihe River Basin. Ecol Res 33:161–174

    Google Scholar 

  • Yu G, Prentice IC, Harrison SP, Sun X (1998) Pollen-based biome reconstructions for China at 0 and 6000 years. J Biogeogr 25:1055–1069

    Google Scholar 

  • Zhang DL, Feng ZD (2018) Holocene climate variations in the Altai Mountains and the surrounding areas: a synthesis of pollen records. Earth Sci Rev 185:847–869

    Google Scholar 

  • Zhang Y, Kong ZC, Yan S, Yang ZJ, Ni J (2009) “Medieval warm period” on the northern slope of central Tianshan mountains, Xinjiang. NW China Geophys Res Lett 36:L11702

    Google Scholar 

  • Zhang H, Zhang Y, Kong Z, Yang Z, Li Y, Tarasov PE (2015) Late Holocene climate change and anthropogenic activities in north Xinxiang: Evidence from a peatland archive, the Caotanhu wetland. Holocene 25:323–332

    Google Scholar 

  • Zhang X, Jin L, Huang W et al (2016a) Forcing mechanisms of orbital–scale changes in winter rainfall over northwestern China during the Holocene. Holocene 26:549–555

    Google Scholar 

  • Zhang Y, Meyers PA, Liu X, Wang G, Ma X, Li X, Yuan Y, Wen B (2016b) Holocene climate changes in the central Asia mountain region inferred from a peat sequence from the Altai Mountains, Xinxiang, northwestern China. Quat Sci Rev 152:19–30

    Google Scholar 

  • Zhang EJ, Chang Y, Cao H, Tang P, Langdon J, Shulmeister R, Wang X, Yang X, Shen J (2017a) A chironomid–based mean July temperature inference model from the south-east margin of the Tibetan Plateau, China. Clim Past 13:185–199

    Google Scholar 

  • Zhang XJ, Jin LY, Chen J, Chen FH, Park W, Schneider B, Latif M (2017b) Detecting the relationship between moisture changes in arid central Asia and East Asia during the Holocene by model–proxy comparison. Quat Sci Rev 175:36–50

    Google Scholar 

  • Zhang Y, Kong Z, Yang Z (2017c) Pollen-based reconstructions of Late Holocene climate on the southern slopes of the central Tianshan Mountains, Xinjiang, NW China. Inter J Climatol 37:1814–1823

    Google Scholar 

  • Zhao Y, Harrison SP (2012) Mid-Holocene monsoons: a multi-model analysis of the inter-hemispheric differences in the responses to orbital forcing and ocean feedbacks. Clim Dyn 39:1457–1487

    Google Scholar 

  • Zhao J, An CB, Huang Y, Morrill C, Chen FH (2017) Contrasting early Holocene temperature variations between monsoonal East Asia and westerly dominated central Asia. Quat Sci Rev 178:14–23

    Google Scholar 

  • Zheng Z et al (2008) Comparison of climatic threshold of geographical distribution between dominant plants and surface pollen in China. Sci China Ser D Earth Sci 51:1107–1120

    Google Scholar 

  • Zheng T, Zhao J, An CB, Tao S, Lu YB, Wang Z (2010) Study of pollen concentrates for AMS 14C dating in Barkol Lake. Mar Geol Quat Geol 30:83–86 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

We thank Xianyong Cao for providing R codes and useful discussions. We also thank two anonymous reviewers for their constructive comments. This study was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA20060201 and XDA19070302), the National Key Research and Development Program of China (Grant No. 2017YFC0404302), the National Nature Science Foundation of China (Grant No. 41801090), and the West Light Foundation of the Chinese Academy of Sciences (Grant No. XAB2016B01). 

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianyong Li or Ninglian Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, N., Dodson, J. et al. Holocene negative coupling of summer temperature and moisture availability over southeastern arid Central Asia. Clim Dyn 55, 1187–1208 (2020). https://doi.org/10.1007/s00382-020-05319-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05319-x

Keywords

Navigation