Skip to main content

Heavy precipitation events over East Africa in a changing climate: results from CORDEX RCMs

Abstract

The study assesses the performance of 24 model runs from five COordinated Regional climate Downscaling Experiment (CORDEX) regional climate models (RCMs) in simulating East Africa’s spatio-temporal precipitation characteristics using a set of eight descriptors: consecutive dry days (CDD), consecutive wet days (CWD), simple precipitation intensity index (SDII), mean daily annual (pr_ANN), seasonal (pr_MAM and pr_OND) precipitation, and representatives of heavy precipitation (90p) and very intense precipitation (99p) events. Relatively better performing RCM runs are then used to assess projected precipitation changes (for the period 2071–2099 relative to 1977–2005) over the study domain under the representative concentration pathway (RCP) 8.5 scenario. The performance of RCMs is found to be descriptor and scope specific. Overall, RCA4 (r1i1p1) forced by CNRM-CERFACS-CNRM-CM5 and MPI-M-MPI-ESM-LR, REMO2009 (r1i1p1) forced by MPI-M-MPI-ESM-LR, and RCA4 (r2i1p1) forced by MPI-M-MPI-ESM-LR emerge as the top four RCM runs. We show that an ensemble mean of the top four model runs outperforms an ensemble mean of 24 model simulations and ensemble means for all runs in an RCM. Our analysis of projections shows a reduction (increase) in mean daily precipitation for MAM(OND), an increase(decrease) in CDD(CWD) events, and a general increase in SDII and the width of the right tail of the precipitation distribution (99p–90p). An increase in SDII and 99p–90p implies a possibility of occurrence of heavy and extreme precipitation incidences by the end of the twenty-first century. Our findings provide important information to support the region’s climate change adaptation and mitigation efforts.

This is a preview of subscription content, access via your institution.

Fig. 1

(adapted from Kim et al. 2014)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. 1.

    In addition to the default threshold for a rainy day (1 mm/day), we used a higher threshold of 2.5 mm/day to facilitate comparison.

References

  1. AfDB (2018) East Africa Economic Outlook 2018. The African Development Bank Group. https://bit.ly/2Beg1fm

  2. Alessandro SD, Caballero J, Simpkin S, Lichte J (2015) Kenya Agricultural Risk Assessment. The World Bank. https://bit.ly/2RnCyhP

  3. Beck HE, Wood EF, Pan M, Fisher CK, Miralles DG, van Dijk AI, McVicar TR, Adler RF (2019) MSWEP V2 global 3-hourly 0.1° precipitation: methodology and quantitative assessment. Bull Am Meteorol Soc 100:473–500. https://doi.org/10.1175/BAMS-D-17-0138.1

    Article  Google Scholar 

  4. Breil M, Panitz HJ, Schädler G (2017) Impact of soil-vegetation-atmosphere interactions on the spatial precipitation distribution in the Central Sahel. Meteorol Z 26(4):379–389. https://doi.org/10.1127/metz/2017/0819

    Article  Google Scholar 

  5. Camberlin P (2018) Climate of eastern Africa. Oxf Res Encycl Clim Sci. https://doi.org/10.1093/acrefore/9780190228620.013.512

    Article  Google Scholar 

  6. Chen W, Jiang Z, Li L (2011) Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs. J Clim 24:4741–4756. https://doi.org/10.1175/2011jcli4102.1

    Article  Google Scholar 

  7. Cook KH, Vizy EK (2013) Projected changes in east African rainy seasons. J Clim 26(16):5931–5948. https://doi.org/10.1175/JCLI-D-12-00455.1

    Article  Google Scholar 

  8. Déqué M, Calmanti S, Christensen OB, Aquilla AD, Maule CF, Haensler A, Nikulin G, Teichmann C (2017) A multi-model climate response over tropical Africa at + 2 °C. Clim Serv 7:87–95. https://doi.org/10.1016/j.cliser.2016.06.002

  9. Diaconescu EP, Gachon P, Laprise R (2015) On the remapping procedure of daily precipitation statistics and indices used in regional climate model evaluation. J Hydrometeorol 16:2301–2310. https://doi.org/10.1175/jhm-d-15-0025.1

    Article  Google Scholar 

  10. Dinku T, Funk C, Peterson P, Maidment R, Tadesse T, Gadain H, Ceccato P (2018) Validation of the CHIRPS satellite precipitation estimates over Eastern Africa. Q J R Meteorol Soc 144:292–312. https://doi.org/10.1002/qj.3244

    Article  Google Scholar 

  11. Dosio A, Jones RG, Jack C, Lennard C, Nikulin G, Hewitson B (2019) What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Clim Dyn 53(9–10):5833–5858. https://doi.org/10.1007/s00382-019-04900-3

    Article  Google Scholar 

  12. Dosio A, Panitz HJ (2016) Climate change projections for CORDEX-Africa with COSMO-CLM regional climate model and differences with the driving global climate models. Clim Dyn 46(5–6):1599–1625. https://doi.org/10.1007/s00382-015-2664-4

    Article  Google Scholar 

  13. Dunning CM, Black E, Allan RP (2018) Later wet seasons with more intense precipitation over Africa under future climate change. J Clim 31(23):9719–9738. https://doi.org/10.1175/JCLI-D-18-0102.1

    Article  Google Scholar 

  14. EAC (2018) Investment in agriculture. East African Community. https://bit.ly/2Tlsqo6

  15. Endris HS, Lennard C, Hewitson B, Dosio A, Nikulin G, Artan GA (2019) Future changes in precipitation associated with ENSO, IOD and changes in the mean state over Eastern Africa. Clim Dyn 52(3–4):2029–2053. https://doi.org/10.1007/s00382-018-4239-7

    Article  Google Scholar 

  16. Endris HS, Omondi P, Jain S, Lennard C, Hewitson B, Changa L, Awange JL, Dosio A, Ketiem P, Nikulin G, Panitz HJ, Büchner M, Stordal F, Tazalika L (2013) Assessment of the performance of CORDEX regional climate models in simulating East African precipitation. J Clim 26:8453–8475. https://doi.org/10.1175/JCLI-D-12-00708.1

    Article  Google Scholar 

  17. FAO (2018) The agriculture sector in Kenya. Food and Agriculture Organization of the United Nations. https://bit.ly/2QdVZGQ

  18. Favre A, Stone D, Cerezo R, Philippon N, Abiodun B (2011) Diagnostic of monthly precipitation from CORDEX simulations over Africa: focus on the annual cycles. In: Proceedings of the international conference on the coordinated regional climate downscaling experiment—CORDEX, Trieste, Italy. World Climate Research Program. https://bit.ly/2CHeZJQ

  19. Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Hoell A, Michaelsen J (2015) The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci Data 2:150066. https://doi.org/10.1038/sdata.2015.66

    Article  Google Scholar 

  20. Gebrechorkos SH (2019) Changes in temperature and precipitation extremes in Ethiopia. Int J Climatol 39:18–30. https://doi.org/10.1002/joc.5777

    Article  Google Scholar 

  21. Giorgi F, Im ES, Coppola E, Diffenbaugh NS, Gao XJ, Mariotti L, Shi Y (2011) Higher hydroclimatic intensity with global warming. J Clim 24:5309–5324. https://doi.org/10.1175/2011jcli3979.1

    Article  Google Scholar 

  22. Gudoshava M, Misiani HO, Segele ZT, Jain S, Ouma JO, Otieno G, Anyah R, Indasi VS, Endris HS, Osima S, Lennard C, Zaroug M, Mwangi E, Nimusiima A, Kondowe A, Ogwang B, Artan G, Atheru Z (2020) Projected effects of 1.5 °C and 2 °C global warming levels on the intra-seasonal precipitation characteristics over the Greater Horn of Africa. Environ Res Lett 15(3):034037. https://doi.org/10.1088/1748-9326/ab6b33

  23. Hawinkel P, Thiery W, Lhermitte S, Swinnen E, Verbist B, Van Orshoven J, Muys B (2016) Vegetation response to precipitation variability in East Africa controlled by biogeographical factors. J Geophys Res 121:2422–2444

    Article  Google Scholar 

  24. Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett 36:L17808. https://doi.org/10.1029/2009GL040000

  25. IWMI (2018) Rainfed agriculture. International Water Management Institute. https://bit.ly/2OhzKCy

  26. Jiang Z, Li W, Xu J, Li L (2015) Extreme precipitation indices over China in CMIP5 models. Part I: Model evaluation. J Clim 28:8603–8619. https://doi.org/10.1175/jcli-d-15-0099.1

    Article  Google Scholar 

  27. Kilavi M, MacLeod D, Ambani M, Robbins J, Dankers R, Graham R, Titley H, Salih AAM, Todd MC (2018) Extreme precipitation and flooding over central Kenya including Nairobi city during the long-rains season 2018: causes, predictability, and potential for early warning and actions. Atmosphere 9:472. https://doi.org/10.3390/atmos9120472

    Article  Google Scholar 

  28. Kim J, Waliser DE, Mattmann CA, Goodale CE, Hart AF, Zimdars PA, Crichton DJ, Jones C, Nikulin G, Hewitson B, Jack C, Lennard C, Favre A (2014) Evaluation of the CORDEX-Africa multi-RCM hindcast: systematic model errors. Clim Dyn 42:1189–1202. https://doi.org/10.1007/s00382-013-1751-7

    Article  Google Scholar 

  29. Kiros G, Shetty A, Nandagiri L (2017) Extreme precipitation signatures under changing climate in semi-arid northern highlands of Ethiopia. Cogent Geosci 3(1):1–20. https://doi.org/10.1080/23312041.2017.1353719

  30. Kisembe J, Dosio A, Lennard C, Sabiiti G, Nimusiima A, Favre A (2018) Evaluation of precipitation simulations over Uganda in CORDEX regional climate models. Theor Appl Climatol 137:1117–1134. https://doi.org/10.1007/s00704-018-2643-x

    Article  Google Scholar 

  31. Lazenby MJ, Todd MC, Chadwick R, Wang Y (2018) Future precipitation projections over central and Southern Africa and the adjacent Indian Ocean: what causes the changes and the uncertainty? J Clim 31(12):4807–4826. https://doi.org/10.1175/JCLI-D-17-0311.1

    Article  Google Scholar 

  32. Maidment R, Grimes D, Black E, Tarnavsky E, Young M, Greatrex H, Allan RP, Stein T, Nkonde E, Senkunda S, Alcántara EMU (2017) A new, long-term daily satellite-based precipitation dataset for operational monitoring in Africa. Sci Data 4:170063. https://doi.org/10.1038/sdata.2017.63

    Article  Google Scholar 

  33. Meehl GA, Bony S (2011) Introduction to CMIP5. CLIVAR exchanges, no. 56. International CLIVAR Project Office, Southampton, pp 4–5

  34. Menne MJ, Durre I, Vose RS, Gleason BE, Houston TG (2012) An overview of the global historical climatology network-daily database. J Atmos Oceanic Technol 29:897–910. https://doi.org/10.1175/JTECH-D-11-00103.1

    Article  Google Scholar 

  35. Morton JF (2007) The impact of climate change on smallholder and subsistence agriculture. Proc Natl Acad Sci USA 104(50):19680–19685. https://doi.org/10.1073/pnas.0701855104

    Article  Google Scholar 

  36. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. https://doi.org/10.1038/nature08823

    Article  Google Scholar 

  37. Mubiru DN, Radeny M, Kyazze FB, Zziwa A, Lwasa J, Kinyangi J, Mungai C (2018) Climate trends, risks and coping strategies in smallholder farming systems in Uganda. Clim Risk Manag 22:4–21. https://doi.org/10.1016/j.crm.2018.08.004

    Article  Google Scholar 

  38. Muhati GL, Olago D, Olaka L (2018) Past and projected precipitation and temperature trends in a sub-humid Montane Forest in Northern Kenya based on the CMIP5 model ensemble. Global Ecol Conserv 16:e00469. https://doi.org/10.1016/j.gecco.2018.e00469

    Article  Google Scholar 

  39. Niang I, Ruppel OC, Abdrabo MA, Essel A, Lennard C, Padgham J, Urquhart P (2014) Africa. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds.) Climate change 2014: impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of Working Group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1199–1265

  40. Nicholson SE (2017) Climate and climatic variability of precipitation over eastern Africa. Rev Geophys 55(3):590–635. https://doi.org/10.1002/2016RG000544

    Article  Google Scholar 

  41. Nicholson SE, Kim J (1997) The relationship of the el nino oscillation to African precipitation. Int J Climatol 17:117–135. https://doi.org/10.1002/(SICI)1097-0088(199702)17:2%3c117:AID-JOC84%3e3.0.CO;2-O

    Article  Google Scholar 

  42. Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué M, Fernandez J, Hänsler A, van Meijgaard E, Samuelsson P, Sylla MB, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim 25:6057–6078. https://doi.org/10.1175/jcli-d-11-00375.1

    Article  Google Scholar 

  43. Ochieng J, Kirim L, Mathenge M (2016) Effects of climate variability and change on agricultural production: The case of small-scale farmers in Kenya. NJAS Wageningen J Life Sci 77:71–78. https://doi.org/10.1016/j.njas.2016.03.005

    Article  Google Scholar 

  44. Ogega OM (2017) Use of scientific and indigenous knowledge in adapting to climate change and variability at the Kenyan coast. Master’s thesis, University of Nairobi

  45. Omondi PA, Awange JL, Forootan E, Ogallo LA, Barakiza R, Girmaw GB, Fesseha I, Kululetera V, Kilembe C, Mbati MM, Kilavi M, King’uyu SM, Omeny PA, Njogu A, Badr EM, Musa TA, Muchiri P, Bamanya D, Komutunga E (2014) Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010. Int J Climatol 34(4):1262–1277. https://doi.org/10.1002/joc.3763

  46. Opiyo FE, Wasonga OV, Nyangito MM (2014) Measuring household vulnerability to climate-induced stresses in pastoral rangelands of Kenya: implications for resilience programming. Pastoralism 4:10. https://doi.org/10.1186/s13570-014-0010-9

    Article  Google Scholar 

  47. Osima S, Indasi VS, Zaroug M, Endris HS, Gudoshava M, Misiani HO, Nimusiima A, Anyah RO, Otieno G, Ogwang BA, Jain S, Kondowe AL, Mwangi E, Lennard C, Grigory N, Dosio A (2018) Projected climate over the Greater Horn of Africa under 1.5 ∘C and 2 ∘C global warming. Environ Res Lett 13:065004. https://doi.org/10.1088/1748-9326/aaba1b

  48. Peterson TC, Folland C, Gruza G, Hogg W, Mokssit A, Plummer N (2001) Report of the activities of the Working Group on Climate Change Detection and related rapporteurs. In: World Meteorology Organisation technical document 1071, 143 pp, Commission for Climatology, World Meteorology Organisation, Geneva

  49. Rockström J, Karlberg L, Wani SP, Barron J, Hatibu N, Oweis T, Bruggeman A, Farahani J, Qiang Z (2010) Managing water in rainfed agriculture—the need for a paradigm shift. Agric Water Manag 97:543–550. https://doi.org/10.1016/j.agwat.2009.09.009

    Article  Google Scholar 

  50. Salami A, Kamara AB, Brixiova Z (2010) Smallholder agriculture in East Africa: trends, constraints and opportunities smallholder agriculture in East Africa. African Development Bank Group working paper no. 105, January

  51. Scoccimarro E, Gualdi S, Bellucci A, Zampieri M, Navarra A (2013) Heavy precipitation events in a warmer climate: results from CMIP5 models. J Clim 26:7902–7911. https://doi.org/10.1175/jcli-d-12-00850.1

    Article  Google Scholar 

  52. Scoccimarro E, Gualdi S, Bellucci A, Zampieri M, Navarra A (2016) Heavy precipitation events over the Euro-Mediterranean region in a warmer climate: results from CMIP5 models. Reg Environ Change. https://doi.org/10.1007/s10113-014-0712-y

    Article  Google Scholar 

  53. Shiferaw A, Tadesse T, Rowe C, Oglesby R (2018) Precipitation extremes in dynamically downscaled climate scenarios over the greater horn of Africa. Atmosphere 9(3):1–28. https://doi.org/10.3390/atmos9030112

    Article  Google Scholar 

  54. Shongwe ME, van Oldenborgh GJ, van den Hurk B, van Aalst M (2011) Projected changes in mean and extreme precipitation in Africa under global warming. Part II: East Africa. J Clim 24(14):3718–3733. https://doi.org/10.1175/2010JCLI2883.1

  55. Shonk JKP, Guilyardi E, Toniazzo T, Woolnough SJ, Stockdale T (2018) Identifying causes of Western Pacific ITCZ drift in ECMWF system 4 hindcasts. Clim Dyn 50(3–4):939–954. https://doi.org/10.1007/s00382-017-3650-9

    Article  Google Scholar 

  56. Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J Geophys Res Atmos 118:2473–2493. https://doi.org/10.1002/jgrd.50188

    Article  Google Scholar 

  57. Vizy EK, Cook KH (2012) Mid-twenty-first-century changes in extreme events over northern and tropical Africa. J Clim 25(17):5748–5767. https://doi.org/10.1175/JCLI-D-11-00693.1

    Article  Google Scholar 

  58. Wainwright CM, Marsham JH, Keane RJ, Rowell DP, Finney DL, Black E, Allan RP (2019) Eastern African paradox’ precipitation decline due to shorter not less intense long rains. Clim Atmos Sci 2(1):1–9. https://doi.org/10.1038/s41612-019-0091-7

  59. Zhou B, Wen QH, Xu Y, Song L, Zhang X (2014) Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J Clim 27:6591–6611. https://doi.org/10.1175/jcli-d-13-00761.1

    Article  Google Scholar 

  60. Zhou RG, Hu W, Fan P, Ian H (2017) Quantum realization of the bilinear interpolation method for NEQR. Sci Rep 7:1. https://doi.org/10.1038/s41598-017-02575-6

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank colleagues from the IGAD Climate Prediction and Applications Centre (ICPAC), The African Academy of Sciences (AAS), and Kenyatta University, Nairobi for their insights that helped shape this paper. Contribution of various modelling groups participating in CORDEX as outlined in Table 1 (as well CHIRPS and TAMSAT data) are acknowledged for making the data publicly available. Further, the lead author acknowledges the contribution of Dr. Benjamin Gyampoh towards the realization of this paper. Statements made and errors, if any, are solely the responsibility of the authors and not the institutions they represent.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Obed M. Ogega.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ogega, O.M., Koske, J., Kung’u, J.B. et al. Heavy precipitation events over East Africa in a changing climate: results from CORDEX RCMs. Clim Dyn 55, 993–1009 (2020). https://doi.org/10.1007/s00382-020-05309-z

Download citation

Keywords

  • Intraseasonal precipitation variability
  • CORDEX
  • Regional climate model
  • RCP 8.5
  • Global warming