Acosta-Navarro JC, Ortega P, Batté L, Smith D, Bretonnière P-A, Guemas V et al (2020) Link between autumnal Arctic Sea ice and Northern Hemisphere winter forecast skill. Geophys Res Lett, accepted
Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc 139:1132–1161. https://doi.org/10.1002/qj.2063
Article
Google Scholar
Batté L, Déqué M (2016) Randomly correcting model errors in the ARPEGE-Climate v6. 1 component of CNRM-CM: applications for seasonal forecasts. Geosci Model Dev. https://doi.org/10.5194/gmd-9-2055-2016
Article
Google Scholar
Blackport R, Screen JA, van der Wiel K, Bintanja R (2019) Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nat Clim Change 9(9):697–704
Article
Google Scholar
Blanchard-Wrigglesworth E, Armour KC, Bitz CM, DeWeaver E (2011) Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J Clim 24:231–250
Article
Google Scholar
Blanchard-Wrigglesworth E, Barthélemy A, Chevallier M, Cullather R, Fuckar NS et al (2017) Multi-model seasonal forecast of Arctic sea-ice: forecast uncertainty at pan-Arctic and regional scales. Clim Dyn. https://doi.org/10.1007/s00382-016-3388-9
Article
Google Scholar
Blockley EW, Peterson KA (2018) Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness. Cryosphere 12:3419–3438. https://doi.org/10.5194/tc-12-3419-2018
Article
Google Scholar
Bonan DB, Bushuk M, Winton M (2019) A spring barrier for regional predictions of summer Arctic sea ice. Geophys Res Lett 46:5937–5947. https://doi.org/10.1029/2019GL082947
Article
Google Scholar
Brier GW (1950) Verification of forecasts expressed in terms of probability. Monthly Weather Rev 78:1–3. https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
Article
Google Scholar
Brodeau L, Barnier B, Treguier AM, Penduff T, Gulev S (2010) An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Model 31(3–4):88–104
Article
Google Scholar
Bushuk M et al (2017) Skillful regional prediction of Arctic sea ice on seasonal timescales. Geophys Res Lett 44:4953–4964. https://doi.org/10.1002/2017GL073155
Article
Google Scholar
Bushuk M, Msadek R, Winton M, Vecchi G et al (2019) Regional Arctic sea–ice prediction: potential versus operational seasonal forecast skill. Clim Dyn 52(5–6):2721–2743. https://doi.org/10.1007/s00382-018-4288-y
Article
Google Scholar
Cavalieri DJ, Parkinson CL, Gloersen P, Zwally HJ (1996) Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: 10.5067/8GQ8LZQVL0VL. Accessed 20 Feb 2017
Chevallier M, Salas y Mélia D (2012) The role of sea ice thickness distribution in the Arctic sea ice potential predictability: a diagnostic approach with a coupled GCM. J Clim 25:3025–3038
Article
Google Scholar
Chevallier M, Salas y Mélia D, Voldoire A, Déqué M, Garric G (2013) Seasonal forecasts of the pan-Arctic sea ice extent using a GCM-based seasonal prediction system. J Clim 26(16):6092–6104. https://doi.org/10.1175/JCLI-D-12-00612.1
Article
Google Scholar
Chevallier M, Smith GC, Dupont F et al (2017) Intercomparison of the Arctic sea ice cover in global ocean–sea ice reanalyses from the ORA-IP project. Clim Dyn 49:1107. https://doi.org/10.1007/s00382-016-2985-y
Article
Google Scholar
Coumou D, Di Capua G, Vavrus S, Wang L, Wang S (2018) The influence of Arctic amplification on mid-latitude summer circulation. Nat Comm 9:2959. https://doi.org/10.1038/s41467-018-05256-8
Article
Google Scholar
Cruz-Garcia R, Guemas V, Chevallier M, Massonnet F (2019) An assessment of regional sea ice predictability in the Arctic ocean. Clim Dyn. https://doi.org/10.1007/s00382-018-4592-6
Article
Google Scholar
Day JJ, Tietsche S, Hawkins E (2014) Pan-Arctic and regional sea ice predictability: initialization month dependence. J Clim 27:4371–4390. https://doi.org/10.1175/JCLI-D-13-00614.1
Article
Google Scholar
Director HM, Raftery AE, Bitz CM (2017) Improved sea ice forecasting through spatiotemporal bias correction. J Clim 30:9493–9510. https://doi.org/10.1175/JCLI-D-17-0185.1
Article
Google Scholar
Dirkson A, Denis B, Merryfield WJ (2019a) A multimodel approach for improving seasonal probabilistic forecasts of regional Arctic sea ice. Geophys Res Lett 46:10844–10853. https://doi.org/10.1029/2019GL083831
Article
Google Scholar
Dirkson A, Merryfield WJ, Monahan AH (2019b) Calibrated probabilistic forecasts of Arctic sea ice concentration. J Clim 32:1251–1271. https://doi.org/10.1175/JCLI-D-18-0224.1
Article
Google Scholar
Eicken H (2013) Arctic sea ice needs better forecasts. Nature 497:431–433. https://doi.org/10.1038/497431a
Article
Google Scholar
Ferry N, Parent L, Garric G, Barnier B et al (2010) Mercator global Eddy permitting ocean reanalysis GLORYS1V1: Description and results. Mercator-Ocean Q Newslett 36: 15–27. https://www.mercator-ocean.fr/sciences-publications/mercator-ocean-journal/newsletter-36-data-assimilation-and-its-application-to-ocean-reanalyses/
Fichefet T, Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res-Oceans 102:12609–12646. https://doi.org/10.1029/97JC00480
Article
Google Scholar
Francis JA, Skific N, Vavrus SJ (2018) North American weather regimes are becoming more persistent: is arctic amplification a factor? Geophys Res Lett 45:11414–11422. https://doi.org/10.1029/2018GL080252
Article
Google Scholar
García-Serrano J et al (2015) On the predictability of the winter Euro-Atlantic climate: lagged influence of autumn Arctic sea ice. J Clim 28(13):5195–5216
Article
Google Scholar
Germe A, Chevallier M, Salas y Mélia D, Sanchez-Gomez E, Cassou C (2014) Interannual predictability of Arctic sea ice in a global climate model: regional contrasts and temporal evolution. Clim Dyn 43(9–10):2519–2538. https://doi.org/10.1007/s00382-014-2071-2
Article
Google Scholar
Goessling HF, Jung T (2018) A probabilistic verification score for contours: methodology and application to Arctic ice-edge forecasts. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3242
Article
Google Scholar
Goessling HF et al (2016) Predictability of the Arctic sea ice edge. Geophys Res Lett 43:1642–1650. https://doi.org/10.1002/2015GL067232
Article
Google Scholar
Guemas V, Doblas-Reyes F, Germe A, Chevallier M, Salas y Mélia D (2013) September 2012 Arctic sea ice minimum: discriminating between sea ice memory, the August 2012 extreme storm and prevailing warm conditions [in "Explaining Extreme Events of 2012 from a Climate Perspective"]. Bull Am Meteorol Soc 94(9):S20–S22. https://doi.org/10.1175/BAMS-D-13-00085.1
Article
Google Scholar
Guemas V, Blanchard-Wrigglesworth E, Chevallier M, Day JJ, Déqué M et al (2016) A review on Arctic sea-ice predictability and prediction on seasonal to decadal time-scales. Q J R Meteorol Soc 142:546–561. https://doi.org/10.1002/qj.2401
Article
Google Scholar
Hagedorn R, Doblas-Reyes FJ, Palmer TN (2005) The rationale behind the success of multi-model ensembles in seasonal forecasting I. Basic concept. Tellus A Dyn Meteorol Oceanogr 57A:219–233. https://doi.org/10.3402/tellusa.v57i3.14657
Article
Google Scholar
Johnson S, Stockdale TN, Ferranti L, Balmaseda MA, Molteni F et al (2019) SEAS5: the new ECMWF seasonal forecast system. Geosci Model Dev 12:1087–1117. https://doi.org/10.5194/gmd-12-1087-2019
Article
Google Scholar
Jung T et al (2015) Polar lower-latitude linkages and their role in weather and climate prediction. Bull Am Meteorol Soc 96:197–200. https://doi.org/10.1175/BAMS-D-15-00121.1
Article
Google Scholar
Kimmritz M, Counillon F, L. H., I. Bethke, N. Keenlyside, F. Ogawa, and Y. Wang, (2019) Impact of ocean and sea ice initialisation on seasonal prediction skill in the Arctic. J Adv Model Earth Syst 11:4147–4166. https://doi.org/10.1029/2019MS001825
Article
Google Scholar
MacLachlan C, Arribas A, Peterson KA, Maidens A, Fereday D, Scaife AA, Gordon M, Vellinga M, Williams A, Comer RE, Camp J, Xavier P, Madec G (2015) Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Q J R Meteorol Soc 141:1072–1084. https://doi.org/10.1002/qj.2396
Article
Google Scholar
Madec G, Bourdallé-Badie R, Bouttier P-A et al (2017) NEMO Ocean Engine. https://doi.org/10.5281/ZENODO.1472492
Article
Google Scholar
Manubens N, Caron L-P, Hunter A, Bellprat O, Exarchou E et al (2018) An R package for climate forecast verification. Environ Model Softw 103:29–42. https://doi.org/10.1016/jenvsoft.2018.01.018
Article
Google Scholar
Massonnet F, Goosse H, Fichefet T, Counillon F (2014) Calibration of sea ice dynamic parameters in an ocean-sea ice model using an ensemble Kalman filter. J Geophys Res Oceans 119:4168–4184. https://doi.org/10.1002/2013JC009705
Article
Google Scholar
Melia N, Haines K, Hawkins E, Day JJ (2017) Towards seasonal Arctic shipping route predictions. Environ Res Lett 12:084005. https://doi.org/10.1088/1748_9326/aa7a60
Article
Google Scholar
Merryfield WJ, Lee W-S, Wang W, Chen M, Kumar A (2013) Multi-system seasonal predictions of Arctic sea ice. Geophys Res Lett 40(8):1551–1556. https://doi.org/10.1002/grl.50317
Article
Google Scholar
Msadek R, Vecchi GA, Winton M, Gudgel RG (2014) Importance of initial conditions in seasonal predictions of Arctic sea ice extent. Geophys Res Lett 41:5208–5215. https://doi.org/10.1002/2014GL060799
Article
Google Scholar
Murphy AH (1972) Scalar and vector partitions of the probability score: part I. two-state situation. J Appl Meteor 11:273–282. https://doi.org/10.1175/1520-0450(1972)011%3C0273:SAVPOT%3E2.0.CO;2
Article
Google Scholar
Olonscheck D, Mauritsen T, Notz D (2019) Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations. Nat Geosci 12:430–434. https://doi.org/10.1038/s41561-019-0363-1
Article
Google Scholar
Serreze MC, Stroeve J (2015) Arctic sea ice trends, variability and implications for seasonal ice forecasting. Phil Trans R Soc A 373:20140159. https://doi.org/10.1098/rsta.2014.0159
Article
Google Scholar
Tietsche S, Day JJ, Guemas V, Hurlin WJ, Keeley SPE et al (2014) Seasonal to interannual Arctic sea ice predictability in current global climate models. Geophys Res Lett 41:1035–1043. https://doi.org/10.1002/2013GL058755
Article
Google Scholar
Vancoppenolle M, Fichefet T, Goosse H, Bouillon S, Madec G, Morales Maqueda MA (2009) Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1 Model description and validation. Ocean Model 27:33–53. https://doi.org/10.1016/j.oceamod.2008.10.005
Article
Google Scholar
Vihma T (2014) Effects of Arctic sea ice decline on weather and climate: a review. Surv Geophys 35:1175–1214
Article
Google Scholar
Voldoire A, Saint-Martin D, Sénési S, Decharme B, Alias A et al (2019) Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J Adv Model Earth Syst. https://doi.org/10.1029/2019MS001683
Article
Google Scholar
Wang W, Chen M, Kumar A (2013) Seasonal prediction of Arctic sea ice extent from a coupled dynamical forecast system. Monthly Weather Rev 141(4):1375–1394. https://doi.org/10.1175/MWR-D-12-00057.1
Article
Google Scholar
Walsh JE, Stuart JS, Fetterer F (2019) Benchmark seasonal prediction skill estimates based on regional indices. Cryosphere 13:1073–1088. https://doi.org/10.5194/tc-13-1073-2019
Article
Google Scholar
Wayand NE, Bitz CM, Blanchard-Wrigglesworth E (2019) A year-round subseasonal-to-seasonal sea ice prediction portal. Geophys Res Lett 46: https://doi.org/10.1029/2018GL081565
Article
Google Scholar
Weisheimer A, Palmer TN (2014) On the reliability of seasonal climate forecasts. J R Soc Interface 11:20131162. https://doi.org/10.1098/rsif.2013.1162
Article
Google Scholar
Zampieri L, Goessling HF, Jung T (2018) Bright prospects for Arctic sea ice prediction on subseasonal time scales. Geophys Res Lett 45:9731–9738. https://doi.org/10.1029/2018GL079394
Article
Google Scholar
Zhang J, Lindsay R, Schweiger A, Steele M (2013) The impact of an intense summer cyclone on 2012 Arctic sea ice retreat. Geophys Res Lett. https://doi.org/10.1002/grl.50190
Article
Google Scholar
Zuo H, Balmaseda MA, Tietsche S, Mogensen K, Mayer M (2019) The ECMWF operational ensemble reanalysis-analysis system for ocean and sea-ice: a description of the system and assessment. Ocean Sci 15:779–808. https://doi.org/10.5194/os-15-779-2019
Article
Google Scholar