Skip to main content

Contribution of oceanic wave propagation from the tropical Pacific to asymmetry of the Ningaloo Niño/Niña

Abstract

Ningaloo Niño/Niña is the dominant mode of interannual variability of sea surface temperature (SST) in the southeastern Indian Ocean. According to previous studies, both local air-sea interaction and remote forcing contribute to generation and amplification of the Ningaloo Niño/Niña. The latter forcing includes the atmospheric teleconnection and oceanic wave propagation through the Indonesian archipelago, mainly associated with the El Niño/Southern Oscillation (ENSO). One of the most important characteristics of the Ningaloo Niño/Niña is their asymmetry; the Ningaloo Niño is stronger than the Ningaloo Niña. Using a regional ocean modeling system (ROMS), the impact of oceanic wave propagation on the amplitude and asymmetry of SST anomalies associated with the Ningaloo Niño/Niña is investigated. For these purposes, a sensitivity experiment in which oceanic lateral boundary conditions are replaced by the monthly climatology is conducted. It is shown that the oceanic teleconnection transmitted from the western tropical Pacific can explain about 30% of the observed amplitude asymmetry in SST anomalies. Results from composite and heat budget analyses suggest that coastal downwelling (upwelling) Kelvin waves from the western tropical Pacific associated with La Niña (El Niño) that often co-occurs with the Ningaloo Niño (Niña) are stronger (weaker) and contribute to the asymmetry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc 139:1132–1161. https://doi.org/10.1002/qj.2063

    Article  Google Scholar 

  2. Benthuysen J, Feng M, Zhong L (2014) Spatial patterns of warming off Western Australia during the 2011 Ningaloo Niño: quantifying impacts of remote and local forcing. Cont Shelf Res 91:232–246. https://doi.org/10.1016/j.csr.2014.09.014

    Article  Google Scholar 

  3. Clarke AJ, Liu X, Clarke AJ, Liu X (1994) Interannual sea level in the northern and eastern Indian Ocean. J Phys Oceanogr 24:1224–1235. https://doi.org/10.1175/1520-0485(1994)024%3c1224:ISLITN%3e2.0.CO;2

    Article  Google Scholar 

  4. Depczynski M, Gilmour JP, Ridgway T, Barnes H, Heyward AJ, Holmes TH, Moore JAY, Radford BT, Thomson DP, Tinkler P, Wilson SK (2013) Bleaching, coral mortality and subsequent survivorship on a West Australian fringing reef. Coral Reefs 32:233–238. https://doi.org/10.1007/s00338-012-0974-0

    Article  Google Scholar 

  5. Doi T, Behera SK, Yamagata T (2013) Predictability of the Ningaloo Niño/Niña. Sci Rep 3:1–7. https://doi.org/10.1038/srep02892

    Article  Google Scholar 

  6. Fairall C, Bradley E, Hare J, Grachev A, Edson J (2003) Bulk parameterization of air–sea fluxes: updates and verification for the CORE algorithm. J Clim 16:571–591. https://doi.org/10.1175/1520-0442(2003)016%3c0571:BPOASF%3e2.0.CO;2

    Article  Google Scholar 

  7. Feng M, Meyers G, Pearce A, Wijffels S (2003) Annual and interannual variations of the Leeuwin current at 32°S. J Geophys Res 108:3355. https://doi.org/10.1029/2002JC001763

    Article  Google Scholar 

  8. Feng M, McPhaden MJ, Xie SP, Hafner J (2013) La Niña forces unprecedented Leeuwin current warming in 2011. Sci Rep 3:1–9. https://doi.org/10.1038/srep01277

    Article  Google Scholar 

  9. Furuichi N, Hibiya T, Niwa Y (2012) Assessment of turbulence closure models for resonant inertial response in the oceanic mixed layer using a large eddy simulation model. J Oceanogr 68:285–294. https://doi.org/10.1007/s10872-011-0095-3

    Article  Google Scholar 

  10. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Quart J R Met Soc 106:447–462. https://doi.org/10.1002/qj.49710644905

    Article  Google Scholar 

  11. Guo Y, Li Y, Wang F, Wei Y, Rong Z (2020) Processes controlling sea surface temperature variability of Ningaloo Niño. J Clim. https://doi.org/10.1175/jcli-d-19-0698.1

    Article  Google Scholar 

  12. Jin EK, Kinter JL, Wang B et al (2008) Current status of ENSO prediction skill in coupled ocean-atmosphere models. Clim Dyn 31:647–664. https://doi.org/10.1007/s00382-008-0397-3

    Article  Google Scholar 

  13. Kang IS, Kug JS (2002) EI Niño and La Niña sea surface temperature anomalies: asymmetry characteristics associated with their wind stress anomalies. J Geophys Res Atmos 107:4372. https://doi.org/10.1029/2001JD000393

    Article  Google Scholar 

  14. Kataoka T, Tozuka T, Behera S, Yamagata T (2014) On the Ningaloo Niño/Niña. Clim Dyn 43:1463–1482. https://doi.org/10.1007/s00382-013-1961-z

    Article  Google Scholar 

  15. Kataoka T, Tozuka T, Yamagata T (2017) Generation and decay mechanisms of Ningaloo Niño/Niña. J Geophys Res Ocean 122:8913–8932. https://doi.org/10.1002/2017JC012966

    Article  Google Scholar 

  16. Kataoka T, Masson S, Izumo T, Tozuka T, Yamagata T (2018) Can Ningaloo Niño/Niña develop without El Niño-Southern oscillation? Geophys Res Lett 45:7040–7048. https://doi.org/10.1029/2018GL078188

    Article  Google Scholar 

  17. Kido S, Kataoka T, Tozuka T (2016) Ningaloo Niño simulated in the CMIP5 models. Clim Dyn 47:1469–1484. https://doi.org/10.1007/s00382-015-2913-6

    Article  Google Scholar 

  18. Kim SB, Fukumori I, Lee T (2006) The closure of the ocean mixed layer temperature budget using level-coordinate model fields. J Atmos Ocean Technol 23:840–853. https://doi.org/10.1175/JTECH1883.1

    Article  Google Scholar 

  19. Kohyama T, Hartmann DL (2017) Nonlinear ENSO warming suppression (NEWS). J Clim 30:4227–4251. https://doi.org/10.1175/JCLI-D-16-0541.1

    Article  Google Scholar 

  20. Marshall AG, Hendon HH, Feng M, Schiller A (2015) Initiation and amplification of the Ningaloo Niño. Clim Dyn 45:2367–2385. https://doi.org/10.1007/s00382-015-2477-5

    Article  Google Scholar 

  21. Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteorol Soc Japan Ser II 44:25–43. https://doi.org/10.2151/jmsj1965.44.1_25

    Article  Google Scholar 

  22. Meyers G (1996) Variation of Indonesian throughflow and the El Niño-Southern oscillation. J Geophys Res Ocean 101:12255–12263. https://doi.org/10.1029/95JC03729@10.1002/(ISSN)2169-9291.PACLLWBC1

    Article  Google Scholar 

  23. Pearce AF, Feng M (2013) The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J Mar Syst 111–112:139–156. https://doi.org/10.1016/j.jmarsys.2012.10.009

    Article  Google Scholar 

  24. Shchepetkin AF, McWilliams JC (2005) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9(4):347–404. https://doi.org/10.1016/j.ocemod.2004.08.002

    Article  Google Scholar 

  25. Smith WHF, Sandwell DT (1997) Global sea floor topography from satellite altimetry and ship depth soundings. Science 277:1956–1962. https://doi.org/10.1126/science.277.5334.1956

    Article  Google Scholar 

  26. Smith RL, Huyer A, Godfrey JS, Church JA (1991) The Leeuwin current off Western Australia, 1986–1987. J Phys Oceanogr 21:323–345. https://doi.org/10.1175/1520-0485(1991)021%3c0323:TLCOWA%3e2.0.CO;2

    Article  Google Scholar 

  27. Su J, Zhang R, Li T, Rong X, Kug JS, Hong C (2010) Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J Clim 23:605–617. https://doi.org/10.1175/2009JCLI2894.1

    Article  Google Scholar 

  28. Tozuka T, Oettli P (2018) Asymmetric cloud-shortwave radiation-sea surface temperature feedback of Ningaloo Niño/Niña. Geophys Res Lett 45:9870–9879. https://doi.org/10.1029/2018GL079869

    Article  Google Scholar 

  29. Tozuka T, Kataoka T, Yamagata T (2014) Locally and remotely forced atmospheric circulation anomalies of Ningaloo Niño/Niña. Clim Dyn 43:2197–2205. https://doi.org/10.1007/s00382-013-2044-x

    Article  Google Scholar 

  30. Tsujino H, Urakawa S, Nakano H et al (2018) JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Model 130:79–139. https://doi.org/10.1016/j.ocemod.2018.07.002

    Article  Google Scholar 

  31. Wernberg T, Smale DA, Tuya F et al (2013) An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Chang 3:78–82. https://doi.org/10.1038/nclimate1627

    Article  Google Scholar 

  32. White GH (1980) Skewness, kurtosis and extreme values of Northern Hemisphere geopotential heights. Mon Weather Rev 108:1446–1455. https://doi.org/10.1175/1520-0493(1980)108%3c1446:skaevo%3e2.0.co;2

    Article  Google Scholar 

  33. Zhang L, Han W (2018) Impact of Ningaloo Niño on tropical Pacific and an interbasin coupling mechanism. Geophys Res Lett 45:11,300–11,309. https://doi.org/10.1029/2018GL078579

    Article  Google Scholar 

  34. Zhang L, Han W, Li Y, Shinoda T (2018) Mechanisms for generation and development of the Ningaloo Niño. J Clim 31:9239–9259. https://doi.org/10.1175/JCLI-D-18-0175.1

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for constructive comments. The present research was supported by the Japan Society for Promotion of Science through Grant-in-Aid for Scientific Research (B) JP16H04047. ECMWF ocean reanalysis ORAS4 data is obtained from (https://apdrc.soest.hawaii.edu/dods/public_data/Reanalysis_Data/ORAS4). The atmospheric and river forcing from the JRA55‐do were downloaded from (https://amaterasu.ees.hokudai.ac.jp/tsujino/JRA55-do-v1.3/). The source code and Python tools for input files of the ROMS are available online (https://www.myroms.org/ and https://github.com/BobTorgerson/Pyroms).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hidehiro Kusunoki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kusunoki, H., Kido, S. & Tozuka, T. Contribution of oceanic wave propagation from the tropical Pacific to asymmetry of the Ningaloo Niño/Niña. Clim Dyn 54, 4865–4875 (2020). https://doi.org/10.1007/s00382-020-05268-5

Download citation

Keywords

  • Ningaloo Niño/Niña
  • Western Australian coast
  • Coastal Kelvin wave
  • Regional ocean model