Skip to main content

Advertisement

Log in

Improving US extreme precipitation simulation: sensitivity to physics parameterizations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Climate models tend to underestimate rainfall intensity while producing more frequent light events, leading to significant bias in extreme precipitation simulation. To reduce this bias and better understand its underlying causes, we tested an ensemble of 25 physics configurations in the regional Climate-Weather Research and Forecasting model (CWRF). All configurations were driven by the ECMWF-Interim reanalysis and continuously integrated during 1980–2015 over the contiguous United States with 30-km grid spacing. Together they represent CWRF’s ability to simulate characteristics of US extreme precipitation, and their spread depicts the structural uncertainty from alternate physics parameterizations. The US extreme precipitation simulation was most sensitive to cumulus parameterization among all physics configurations. The ensemble cumulus parameterization (ECP) was overall the most skilled at reproducing seasonal mean spatial patterns of daily 95th percentile precipitation (P95). Other cumulus schemes severely underestimated P95, especially over the Gulf States and the Central-Midwest States in convective prevailing seasons. CWRF with ECP outperformed the driving reanalysis, which substantially underestimated P95 despite its daily atmospheric moisture data assimilation. The CWRF improvement over ERI is much larger in warm than cold seasons. Changing alone ECP closure assumptions produced two distinct clusters of convective heating/drying effects: one altered P95 mainly by changing total precipitation intensity and another by changing rainy-day frequency. Microphysics, radiation, boundary layer, and land surface processes also impacted the result, especially under mixed synoptic and convective forcings, and some of their parameterization schemes worked with ECP to further improve P95.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res. https://doi.org/10.1029/2005JD006290

    Article  Google Scholar 

  • Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Science 321:1481–1484

    Article  Google Scholar 

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232

    Google Scholar 

  • Anderson BT, Gianotti DJ, Salvucci GD (2015) Detectability of historical trends in station-based precipitation characteristics over the continental United States. J Geophys Res Atmos 120:4842–4859

    Article  Google Scholar 

  • Bechtold P, Chaboureau J-P, Beljaars A, Betts A, Kohler M, Miller M, Redelsperger J-L (2004) The simulation of the diurnal cycle of convective precipitation over land in a global model. Q J R Meteorol Soc 130:3119–3137

    Article  Google Scholar 

  • Bechtold P, Kohler M, Jung T, Doblas-Reyes F, Leutbecher M, Rodwell MJ, Vitart F, Balsamo G (2008) Advances in simulating atmospheric variability with the ECMWF model: from synoptic to decadal time-scales. Q J R Meteorol Soc 134:1337–1351

    Article  Google Scholar 

  • Bechtold P, Semane N, Lopez P, Chaboureau JP, Beljaars A, Bormann N (2013) Breakthrough in forecasting equilibrium and non-equilibrium convection. ECMWF Newsl 136:15–22

    Google Scholar 

  • Bechtold P, Semane N, Lopez P, Chaboureau J-P, Beljaars A, Bormann N (2014) Representing equilibrium and nonequilibrium convection in large-scale models. J Atmos Sci 71:734–753

    Article  Google Scholar 

  • Betts A, Miller M (1986) A new convective adjustment scheme. Part II: single column tests using gate wave, BOMEX, ATEX and arctic air-mass data sets. Q J R Meteorol Soc 112:693–709

    Google Scholar 

  • Boyle J, Klein SA (2010) Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating for the TWP-ice period. J Geophys Res Atmos 115:D23113

    Article  Google Scholar 

  • Brown JR, Jakob C, Haynes JM (2010) An evaluation of rainfall frequency and intensity over the Australian region in a global climate model. J Clim 23:6504–6525

    Article  Google Scholar 

  • Cairo A (2016) The truthful art: data, charts, and maps for communication. New Riders, Indianapolis

    Google Scholar 

  • Catto JL, Pfahl S (2013) The importance of fronts for extreme precipitation. J Geophys Res Atmos 118:1079–10801

    Article  Google Scholar 

  • Chen C-T, Knutson T (2008) On the verification and comparison of extreme rainfall indices from climate models. J Clim 21:1605–1621

    Article  Google Scholar 

  • Choi HI (2006) 3-D volume averaged soil-moisture transport model: a scalable scheme for representing subgrid topographic control in land-atmosphere interactions. Ph.D. dissertation, University of Illinois at Urbana, Champaign

  • Choi HI, Liang X-Z (2010) Improved terrestrial hydrologic representation in mesoscale land surface models. J Hydrometeorol 11:797–809

    Article  Google Scholar 

  • Choi HI, Kumar P, Liang X-Z (2007) Three-dimensional volume-averaged soil moisture transport model with a scalable parameterization of subgrid topographic variability. Water Resour Res 43:W04414

    Article  Google Scholar 

  • Choi HI, Liang X-Z, Kumar P (2013) A conjunctive surface–subsurface flow representation for mesoscale land surface models. J Hydrometeorol 14:1421–1442

    Article  Google Scholar 

  • Choi I-J, Jin EK, Han J-Y, Kim S-Y, Kwon Y (2015) Sensitivity of diurnal variation in simulated precipitation during east Asian summer monsoon to cumulus parameterization schemes. J Geophys Res Atmos 120:11–971

    Google Scholar 

  • Chou M-D, Suarez MJ (1999) A solar radiation parameterization for atmospheric studies, vol 15

  • Chou M, Suarez MJ, Liang X-Z, Yan MM-H, Cote C (2001) A thermal infrared radiation parameterization for atmospheric studies

  • Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19:4605–4630

    Article  Google Scholar 

  • Dai Y, Zeng X, Dickinson RE, Baker I, Bonan GB, Bosilovich MG, Denning AS, Dirmeyer PA, Houser PR, Niu G, Oleson KW (2003) The common land model. Bull Am Meteorol Soc 84:1013–1024

    Article  Google Scholar 

  • Daly C, Taylor G, Gibson W (1997) The PRISM approach to mapping precipitation and temperature. In: Proceedings of 10th AMS conference on applied climatology, pp 20–23

  • Daly C, Slater M, Roberti JA, Laseter S, Swift L (2017) High-resolution precipitation mapping in a mountainous watershed: ground truth for evaluating uncertainty in a national precipitation dataset. Int J Climatol. https://doi.org/10.1002/joc.4986

    Article  Google Scholar 

  • Daniels AE, Morrison JF, Joyce LA, Crookston NL, Chen S-C, McNulty SG (2012) Climate projections FAQ. Gen. Tech. Rep. RMRS-GTR-277WWW. US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer DP, Bechtold P (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Di Luca AR, de Elía R, Laprise R (2012) Potential for added value in precipitation simulated by high-resolution nested regional climate models and observations. Clim Dyn 38(5–6):1229–1247

    Article  Google Scholar 

  • Donat MG, Alexander LV, Herold N, Dittus AJ (2016) Temperature and precipitation extremes in century-long gridded observations, reanalyses, and atmospheric model simulations. J Geophys Res Atmos 121:11–174

    Article  Google Scholar 

  • Durre I, Menne MJ, Gleason BE, Houston TG, Vose RS (2010) Comprehensive automated quality assurance of daily surface observations. J Appl Meteorol Climatol 49:1615–1633

    Article  Google Scholar 

  • Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 81:417

    Article  Google Scholar 

  • Ek M, Mitchell K, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley J (2003) Implementation of NOAH land surface model advances in the national centers for environmental prediction operational mesoscale eta model. J Geophys Res Atmos 108:D22

    Article  Google Scholar 

  • Evans JP, Ekstrom M, Ji F (2012) Evaluating the performance of a WRF physics ensemble over south-east Australia. Clim Dyn 39:1241–1258

    Article  Google Scholar 

  • Fan J, Hu T-C, Truong YK (1994) Robust non-parametric function estimation. Scand J Stat 21:433–446

    Google Scholar 

  • Fischer EM, Beyerle U, Knutti R (2013) Robust spatially aggregated projections of climate extremes. Nat Clim Change 3:1033

    Article  Google Scholar 

  • Frei C, Christensen JH, Déqué M, Jacob D, Jones RG, Vidale PL (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res Atmos 108:4124

    Article  Google Scholar 

  • Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Tank AK, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212

    Article  Google Scholar 

  • Fu Q, Liou K (1992) On the correlated k-distribution method for radiative transfer in non-homogeneous atmospheres. J Atmos Sci 49:2139–2156

    Article  Google Scholar 

  • Fu Q, Liou KN (1993) Parameterization of the radiative properties of cirrus clouds. J Atmos Sci 50:2008–2025

    Article  Google Scholar 

  • Gan Y, Liang X-Z, Duan Q, Choi HI, Dai Y, Wu H (2015) Stepwise sensitivity analysis from qualitative to quantitative: application to the terrestrial hydrological modeling of a conjunctive surface-subsurface process (CSSP) land surface model. J Adv Model Earth Syst 7:648–669

    Article  Google Scholar 

  • Gandin LS, Murphy AH (1992) Equitable skill scores for categorical forecasts. Mon Weather Rev 120:361–370

    Article  Google Scholar 

  • Gregory D, Morcrette J-J, Jakob C, Beljaars A, Stockdale T (2000) Revision of convection, radiation and cloud schemes in the ECMWF integrated forecasting system. Q J R Meteorol Soc 126:1685–1710

    Article  Google Scholar 

  • Grell GA, Dvénéyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29:38–41

    Article  Google Scholar 

  • Groisman PY, Karl TR, Easterling DR, Knight RW, Jamason PF, Hennessy KJ, Suppiah R, Page CM, Wibig J, Fortuniak K, Razuvaev VN (1999) Changes in the probability of heavy precipitation: important indicators of climatic change. Clim Change 42:243–283

    Article  Google Scholar 

  • Groisman PY, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VN (2005) Trends in intense precipitation in the climate record. J Clim 18:1326–1350

    Article  Google Scholar 

  • Han J, Pan H-L (2011) Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Weather Forecast 26:520–533

    Article  Google Scholar 

  • Haylock M, Nicholls N (2000) Trends in extreme rainfall indices for an updated high quality data set for Australia, 1910–1998. Int J Climatol 20:1533–1541

    Article  Google Scholar 

  • Herman GR, Schumacher RS (2016) Extreme precipitation in models: an evaluation. Weather Forecast 31:1853–1879

    Article  Google Scholar 

  • Herold N, Alexander L, Donat M, Contractor S, Becker A (2016) How much does it rain over land? Geophys Res Lett 43:341–348

    Article  Google Scholar 

  • Herold N, Behrangi A, Alexander LV (2017) Large uncertainties in observed daily precipitation extremes over land. J Geophys Res Atmos 122:668–681

    Article  Google Scholar 

  • Hersbach H, Dee DJEN (2016) ERA5 reanalysis is in production. ECMWF Newslett 147(7):5–6. Also ERA5 datasets were described at: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5

  • Hersbach H, Bell W, Berrisford P, Horányi A, Nicolas J, Radu R, Schepers D (2019) Global reanalysis: goodbye ERA-Interim, hello ERA5. ECMWF. https://doi.org/10.21957/vf291hehd7. https://www.ecmwf.int/node/19027

  • Holtslag A, Boville B (1993) Local versus nonlocal boundary-layer diffusion in a global climate model. J Clim 6:1825–1842

    Article  Google Scholar 

  • Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: calculations with the aero radiative transfer models. J Geophys Res Atmos 113:13103

    Article  Google Scholar 

  • Iorio J, Duffy P, Govindasamy B, Thompson S, Khairoutdinov M, Randall D (2004) Effects of model resolution and subgrid-scale physics on the simulation of precipitation in the continental United States. Clim Dyn 23:243–258

    Article  Google Scholar 

  • Jamili A (2016) Robust job shop scheduling problem: mathematical models, exact and heuristic algorithms. Expert Syst Appl 55:341–350

    Article  Google Scholar 

  • Janjic ZI (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945

    Article  Google Scholar 

  • Janjic ZI (2000) Comments on “Development and evaluation of a convection scheme for use in climate models”. J Atmos Sci 57(21):3686. https://doi.org/10.1175/1520-0469(2000)057%3c3686:CODAEO%3e2.0.CO;2

    Article  Google Scholar 

  • Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181

    Article  Google Scholar 

  • Kain JS, Fritsch JM (1993) Convective parameterization for mesoscale models: the Kain–Fritsch scheme. The representation of cumulus convection in numerical models. Springer, pp 165–170

  • Kang I-S, Yang Y-M, Tao W-K (2015) GCMs with implicit and explicit representation of cloud microphysics for simulation of extreme precipitation frequency. Clim Dyn 45:325–335

    Article  Google Scholar 

  • Karl TR, Knight RW (1998) Secular trends of precipitation amount, frequency, and intensity in the United States. Bull Am Meteorol Soc 79:231–241

    Article  Google Scholar 

  • Kunkel KE, Liang X-Z (2005) GCM simulations of the climate in the central United States. J Clim 18(7):1016–1031

    Article  Google Scholar 

  • Kunkel KE, Andsager K, Easterling DR (1999) Long-term trends in extreme precipitation events over the conterminous United States and Canada. J Clim 12:2515–2527

    Article  Google Scholar 

  • Kunkel KE, Andsager K, Liang X-Z, Arritt RW, Takle ES, Gutowski WJ Jr, Pan Z (2002) Observations and regional climate model simulations of heavy precipitation events and seasonal anomalies: a comparison. J Hydrometeorol 3:322–334

    Article  Google Scholar 

  • Kunkel KE, Easterling DR, Kristovich DA, Gleason B, Stoecker L, Smith R (2012) Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. J Hydrometeorol 13:1131–1141

    Article  Google Scholar 

  • Kunkel KE, Karl TR, Brooks H, Kossin J, Lawrimore JH, Arndt D, Bosart L, Changnon D, Cutter SL, Doesken N, Emanuel K (2013) Monitoring and understanding trends in extreme storms: state of knowledge. Bull Am Meteorol Soc 94:499–514

    Article  Google Scholar 

  • Leung LR, Qian Y, Bian X, Washington WM, Han J, Roads JO (2004) Mid-century ensemble regional climate change scenarios for the western United States. Clim Change 62:75–113

    Article  Google Scholar 

  • Li J, Barker H (2005) A radiation algorithm with correlated-k distribution. Part II: local thermal equilibrium. J Atmos Sci 62:286–309

    Article  Google Scholar 

  • Li J, Shibata K (2006) On the effective solar pathlength. J Atmos Sci 63:1365–1373

    Article  Google Scholar 

  • Li J, Dobbie S, Raisanen P, Min Q (2005) Accounting for unresolved clouds in a 1-d solar radiative-transfer model. Q J R Meteorol Soc 131:1607–1629

    Article  Google Scholar 

  • Li F, Collins WD, Wehner MF, Williamson DL, Olson JG, Algieri C (2011) Impact of horizontal resolution on simulation of precipitation extremes in an aqua-planet version of community atmospheric model (CAM3). Tellus A Dyn Meteorol Oceanogr 63:884–892

    Article  Google Scholar 

  • Liang X-Z, Zhang F (2013) The Cloud–Aerosol–Radiation (CAR) ensemble modeling system. Atmos Chem Phys 13:8335–8364

    Article  Google Scholar 

  • Liang X-Z, Kunkel KE, Samel AN (2001) Development of a regional climate model for us Midwest applications. Part I: sensitivity to buffer zone treatment. J Clim 14:4363–4378

    Article  Google Scholar 

  • Liang X-Z, Li L, Dai A, Kunkel KE (2004a) Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys Res Lett 31:L24208

    Article  Google Scholar 

  • Liang X-Z, Li L, Kunkel KE, Ting M, Wang JX (2004b) Regional climate model simulation of us precipitation during 1982–2002. Part I: annual cycle. J Clim 17:3510–3529

    Article  Google Scholar 

  • Liang X-Z, Xu M, Gao W, Kunkel K, Slusser J, Dai Y, Min Q, Houser PR, Rodell M, Schaaf CB, Gao F (2005a) Development of land surface albedo parameterization based on moderate resolution imaging spectroradiometer (MODIS) data. J Geophys Res Atmos 110

  • Liang X-Z, Choi HI, Kunkel KE, Dai Y, Joseph E, Wang JX, Kumar P (2005b) Surface boundary conditions for mesoscale regional climate models. Earth Interact 9:1–28

    Article  Google Scholar 

  • Liang X-Z, Xu M, Yuan X, Ling T, Choi HI, Zhang F, Chen L, Liu S, Su S, Qiao F, He Y (2006) Development of the regional climate-weather research and forecasting model (CWRF): treatment of subgrid topography effects. In: Proceedings of the 7th annual WRF users workshop, Boulder, pp 19–22

  • Liang X-Z, Xu M, Kunkel KE, Grell GA, Kain JS (2007) Regional climate model simulation of US–Mexico summer precipitation using the optimal ensemble of two cumulus parameterizations. J Clim 20:5201–5207

    Article  Google Scholar 

  • Liang X-Z, Xu M, Yuan X, Ling T, Choi HI, Zhang F, Chen L, Liu S, Su S, Qiao F, He Y (2012) Regional climate-weather research and forecasting model. Bull Am Meteorol Soc 93:1363–1387

    Article  Google Scholar 

  • Liang X-Z, Sun C, Zheng X, Dai Y, Xu M, Choi HI, Ling T, Qiao F, Kong X, Bi X, Song L (2018) CWRF performance at downscaling China climate characteristics. Clim Dyn 3–4:2159–2184

    Google Scholar 

  • Liang XZ, Li Q, Mei H, Zeng M (2019) Multi-grid nesting ability to represent convections across the gray zone. J Adv Model Earth Syst

  • Lim K-SS, Hong S-Y (2010) Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon Weather Rev 138:1587–1612

    Article  Google Scholar 

  • Ling T, Liang X-Z, Xu M, Wang Z, Wang B (2011) A multilevel ocean mixed-layer model for 2-dimension applications. Acta Oceanol Sin 33:1–10

    Google Scholar 

  • Ling T, Xu M, Liang X-Z, Wang JX, Noh Y (2015) A multilevel ocean mixed layer model resolving the diurnal cycle: development and validation. J Adv Model Earth Syst 7:1680–1692

    Article  Google Scholar 

  • May W (2004) Simulation of the variability and extremes of daily rainfall during the Indian summer monsoon for present and future times in a global time-slice experiment. Clim Dyn 22:183–204

    Article  Google Scholar 

  • Menne MJ, Durre I, Vose RS, Gleason BE, Houston TG (2012) An overview of the global historical climatology network-daily database. J Atmos Ocean Technol 29:897–910

    Article  Google Scholar 

  • Morrison H, Milbrandt J (2010) Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations. Mon Weather Rev 139:1103–1130

    Article  Google Scholar 

  • Morrison H, Milbrandt JA (2015) Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part i: scheme description and idealized tests. J Atmos Sci 72:287–311

    Article  Google Scholar 

  • Morrison H, Thompson G, Tatarskii V (2009) Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one-and two-moment schemes. Mon Weather Rev 137:991–1007

    Article  Google Scholar 

  • Nakanishi M, Niino H (2006) An improved Mellor-Yamada level-3 model: its numerical stability and application to a regional prediction of advection fog. Bound Layer Meteorol 119:397–407

    Article  Google Scholar 

  • Nakanishi M, Niino H (2009) Development of an improved turbulence closure model for the atmospheric boundary layer. J Meteorol Soc Jpn Ser II 87:895–912

    Article  Google Scholar 

  • Niu G-Y, Yang ZL, Mitchell KE, Chen F, Ek MB, Barlage M, Kumar A, Manning K, Niyogi D, Rosero E, Tewari M (2011) The community NOAH land surface model with multiparameterization options (NOAH-MP): 1. model description and evaluation with local-scale measurements. J Geophys Res Atmos 116:D12109

    Article  Google Scholar 

  • NOAA (2019) NOAA national centers for environmental information (NCEI) U.S. billion-dollar weather and climate disasters. https://www.ncdc.noaa.gov/billions/

  • Nordeng TE (1994) Extended versions of the convective parametrization scheme at ECWMF and their impact on the mean and transient activity of the model in the tropics. Research Department Technical Memorandum 206:1–41

    Google Scholar 

  • Oleson KW, Niu GY, Yang ZL, Lawrence DM, Thornton PE, Lawrence PJ, Stöckli R, Dickinson RE, Bonan GB, Levis S, Dai A (2008) Improvements to the community land model and their impact on the hydrological cycle. J Geophys Res Biogeosci 113

    Article  Google Scholar 

  • Park S, Bretherton CS (2009) The university of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the community atmosphere model. J Clim 22:3449–3469

    Article  Google Scholar 

  • Pendergrass AG, Hartmann DL (2014) The atmospheric energy constraint on global-mean precipitation change. J Clim 27:757–768

    Article  Google Scholar 

  • Pleim JE (2007) A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: model description and testing. J Appl Meteorol Climatol 46:1383–1395

    Article  Google Scholar 

  • Prein AF, Rasmussen RM, Ikeda K, Liu C, Clark MP, Holland GJ (2017) The future intensification of hourly precipitation extremes. Nat Clim Change 7:48

    Article  Google Scholar 

  • Qian Y, Yan H, Hou Z, Johannesson G, Klein S, Lucas D, Neale R, Rasch P, Swiler L, Tannahill J, Wang H (2015) Parametric sensitivity analysis of precipitation at global and local scales in the community atmosphere model CAM5. J Adv Model Earth Syst 7:382–411

    Article  Google Scholar 

  • Qiao F, Liang X-Z (2015) Effects of cumulus parameterizations on predictions of summer flood in the central United States. Clim Dyn 45:727–744

    Article  Google Scholar 

  • Qiao F, Liang X-Z (2016) Effects of cumulus parameterization closures on simulations of summer precipitation over the United States coastal oceans. J Adv Model Earth Syst 8:764–785

    Article  Google Scholar 

  • Qiao F, Liang X-Z (2017) Effects of cumulus parameterization closures on simulations of summer precipitation over the continental United States. Clim Dyn 49:225–247

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20(22):5473–5496

    Article  Google Scholar 

  • Schär C, Ban N, Fischer EM, Rajczak J, Schmidli J, Frei C, Giorgi F, Karl TR, Kendon EJ, Tank AMK, O’Gorman PA (2016) Percentile indices for assessing changes in heavy precipitation events. Clim Change, 1–16

  • Siler N, Roe G (2014) How will orographic precipitation respond to surface warming? An idealized thermodynamic perspective. Geophys Res Lett 41:2606–2613

    Article  Google Scholar 

  • Sillmann J, Thorarinsdottir T, Keenlyside N, Schaller N, Alexander LV, Hegerl G, Seneviratne SI, Vautard R, Zhang X, Zwiers FW (2017) Understanding, modeling and predicting weather and climate extremes: challenges and opportunities. Weather Clim Extremes 18:65–74

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2008) A description of the advanced research WRF version 2. Tech. rep., National Center For Atmospheric Research Boulder Co Mesoscale and Microscale

  • Smith AB, Matthews JL (2015) Quantifying uncertainty and variable sensitivity within the us billion-dollar weather and climate disaster cost estimates. Nat Hazards 77:1829–1851

    Article  Google Scholar 

  • Stegall ST, Kunkel KE (2019) Simulation of daily extreme precipitation over the United States in the CMIP5 30-yr decadal prediction experiment. J Appl Meteorol Climatol 58(4):875–886

    Article  Google Scholar 

  • Stephens GL, L’Ecuyer T, Forbes R, Gettelmen A, Golaz JC, Bodas-Salcedo A, Suzuki K, Gabriel P, Haynes J (2010) Dreary state of precipitation in global models. J Geophys Res Atmos 115

  • Subin ZM, Riley WJ, Mironov D (2012) An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. J Adv Model Earth Syst 4

  • Sun C, Liang X-Z (2019) Improving U.S. extreme precipitation simulation: Dependence on cumulus parameterization and underlying mechanism. Clim Dyn (a companion paper submitted)

  • Sun D-Z, Fasullo J, Zhang T, Roubicek A (2003) On the radiative and dynamical feedbacks over the equatorial pacific cold tongue. J Clim 16:2425–2432

    Article  Google Scholar 

  • Sun Y, Solomon S, Dai A, Portmann RW (2006) How often does it rain? J Clim 19:916–934

    Article  Google Scholar 

  • Tao W-K, Simpson J, McCumber M (1989) An ice-water saturation adjustment. Mon Weather Rev 117:231–235

    Article  Google Scholar 

  • Tao W-K, Starr D, Hou A, Newman P, Sud Y (2003) A cumulus parameterization work- shop. Bull Am Meteorol Soc 84:1055–1062

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106:7183–7192

    Article  Google Scholar 

  • Thompson G, Eidhammer T (2014) A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J Atmos Sci 71:3636–3658

    Article  Google Scholar 

  • Thompson G, Rasmussen RM, Manning K (2004) Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: description and sensitivity analysis. Mon Weather Rev 132:519–542

    Article  Google Scholar 

  • Thompson G, Field PR, Rasmussen RM, Hall WD (2008) Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part ii: implementation of a new snow parameterization. Mon Weather Rev 136:5095–5115

    Article  Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800

    Article  Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217

    Article  Google Scholar 

  • Tripathi OP, Dominguez F (2013) Effects of spatial resolution in the simulation of daily and subdaily precipitation in the southwestern US. J Geophys Res Atmos 118:7591–7605

    Article  Google Scholar 

  • USGCRP (2017) Climate science special report: fourth national climate assessment, vol I. Page, US Global Change Research Program, Washington, DC

    Google Scholar 

  • Wang J, Kotamarthi VR (2015) High-resolution dynamically downscaled projections of precipitation in the mid and late 21st century over north America. Earth’s Future 3:268–288

    Article  Google Scholar 

  • Wehner MF, Smith RL, Bala G, Duffy P (2010) The effect of horizontal resolution on simulation of very extreme us precipitation events in a global atmosphere model. Clim Dyn 34:241–247

    Article  Google Scholar 

  • Wilcox EM, Donner LJ (2007) The frequency of extreme rain events in satellite rain-rate estimates and an atmospheric general circulation model. J Clim 20:53–69

    Article  Google Scholar 

  • Wilson DR, Bushell A, Kerr-Munslow AM, Price JD, Morcrette CJ, Bodas-Salcedo A (2008) PC2: a prognostic cloud fraction and condensation scheme. II: climate model simulations. Q J R Meteorol Soc 134:2109–2125

    Article  Google Scholar 

  • Wuebbles DJ, Kunkel K, Wehner M, Zobel Z (2014) Severe weather in united states under a changing climate. Eos Trans Am Geophys Union 95:149–150

    Article  Google Scholar 

  • Xie S, Zhang M, Boyle JS, Cederwall RT, Potter GL, Lin W (2004) Impact of a revised convective triggering mechanism on community atmosphere model, version 2, simulations: results from short-range weather forecasts. J Geophys Res Atmos 109

  • Xie SP, Deser C, Vecchi GA, Collins M, Delworth TL, Hall A, Hawkins E, Johnson NC, Cassou C, Giannini A, Watanabe M (2015) Towards predictive understanding of regional climate change. Nat Clim Change 5:912

    Article  Google Scholar 

  • Xu K-M, Randall DA (1996) A semiempirical cloudiness parameterization for use in climate models. J Atmos Sci 53:3084–3102

    Article  Google Scholar 

  • Xu M, Liang X-Z, Samel A, Gao W (2014) Modis consistent vegetation parameter specifications and their impacts on regional climate simulations. J Clim 27:8578–8596

    Article  Google Scholar 

  • Yang ZL, Niu GY, Mitchell KE, Chen F, Ek MB, Barlage M, Longuevergne L, Manning K, Niyogi D, Tewari M, Xia Y (2011) The community NOAH land surface model with multi-parameterization options (NOAH-MP): 2. Evaluation over global river basins. J Geophys Res Atmos 116

  • Yuan X, Liang X-Z (2011) Evaluation of a conjunctive surface-subsurface process model (CSSP) over the contiguous United States at regional-local scales. J Hydrometeorol 12:579–599

    Article  Google Scholar 

  • Yuan X, Liang X-Z, Wood EF (2012) WWR ensemble downscaling seasonal forecasts of china winter precipitation during 1982–2008. Clim Dyn 39:2041–2058

    Article  Google Scholar 

  • Zhang C, Wang Y, Hamilton K (2011a) Improved representation of boundary layer clouds over the southeast pacific in ARW–WRF using a modified Tiedtke cumulus parameterization scheme. Mon Weather Rev 139:3489–3513. https://doi.org/10.1175/MWR-D-10-05091.1PDF

    Article  Google Scholar 

  • Zhang X, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, Trewin B, Zwiers FW (2011b) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip Rev Clim Change 2:851–870

    Article  Google Scholar 

  • Zhang F, Liang X-Z, Li J, Zeng Q-C (2013) Dominant roles of subgrid-scale cloud structures in model diversity of cloud radiative effects. J Geophys Res 118:7733–7749. https://doi.org/10.1002/jgrd.50604

    Article  Google Scholar 

  • Zobel Z, Wang J, Wuebbles DJ, Kotamarthi VR (2018) Evaluations of high-resolution dynamically downscaled ensembles over the contiguous united states. Clim Dyn 50:863–884

    Article  Google Scholar 

Download references

Acknowledgements

The CWRF simulations and analyses were conducted on the supercomputers, including the University of Illinois’ Blue Water, the Maryland Advanced Research Computing Center, the Computational and Information Systems Lab of the National Center for Atmospheric Research, and the National Energy Research Scientific Computing Center of U.S. Department of Energy. We thank Kenneth Kunkel for providing the Cooperative Observer network station data. The research was supported by U.S. National Science Foundation Innovations at the Nexus of Food, Energy and Water Systems under Grants EAR-1639327 and EAR1903249, U.S. Department of Agriculture UV-B Monitoring and Research Program at Colorado State University under the National Institute of Food and Agriculture Grant 2015-34263-24070, and U.S. Environmental Protection Agency Science to Achieve Results under Assistance Agreement No. RD83587601. The views expressed in this document are solely those of the authors and do not necessarily reflect those of the funding Agency. We sincerely thank Jennifer Kennedy for thorough editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Zhong Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Liang, XZ. Improving US extreme precipitation simulation: sensitivity to physics parameterizations. Clim Dyn 54, 4891–4918 (2020). https://doi.org/10.1007/s00382-020-05267-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05267-6

Keywords

Navigation