Arora VK et al (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett. https://doi.org/10.1029/2010gl046270
Article
Google Scholar
Bennett JC et al (2013) Performance of an empirical bias-correction of a high-resolution climate dataset. Int J Climatol. https://doi.org/10.1002/joc.3830
Article
Google Scholar
Bentsen M et al (2013) The Norwegian Earth System Model, NorESM1-M - Part 1: Description and basic evaluation of the physical climate. Geosci Model Dev 6:687–720. https://doi.org/10.5194/gmd-6-687-2013
Article
Google Scholar
Bi DH et al (2013) The ACCESS coupled model: description, control climate and evaluation. Aust Meteorol Oceanogr J 63:41–64. https://doi.org/10.22499/2.6301.004
Article
Google Scholar
Brown JR, Moise AF, Colman R, Zhang HQ (2016) Will a warmer world mean a wetter or drier Australian Monsoon? J Clim 29:4577–4596. https://doi.org/10.1175/jcli-d-15-0695.1
Article
Google Scholar
Brown JR, Moise AF, Colman RA (2017) Projected increases in daily to decadal variability of Asian–Australian monsoon rainfall. Geophys Res Lett 44:5683–5690. https://doi.org/10.1002/2017gl073217
Article
Google Scholar
Collins WJ et al (2011) Development and evaluation of an earth-system model-HadGEM2. Geosci Model Dev 4:1051–1075. https://doi.org/10.5194/gmd-4-1051-2011
Article
Google Scholar
Corney SP et al (2013) Performance of downscaled regional climate simulations using a variable-resolution regional climate model: tasmania as a test case. J Geophys Res 118:1–15. https://doi.org/10.1002/2013JD020087
Article
Google Scholar
CSIRO, Bureau of Meteorology (2015) Climate change in Australia, Technical Report. www.climatechangeinaustralia.gov.au. Melbourne Australia
Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828
Article
Google Scholar
Dickinson RE et al (2006) The community land model and its climate statistics as a component of the community climate system model. J Clim 19:2302–2324. https://doi.org/10.1175/jcli3742.1
Article
Google Scholar
Di Luca A, de Elia R, Laprise R (2012) Potential for added value in precipitation simulated by high-resolution nested Regional Climate Models and observations. Clim Dyn 38:1229–1247. https://doi.org/10.1007/s00382-011-1068-3
Article
Google Scholar
Di Luca A, de Elia R, Laprise R (2013a) Potential for added value in temperature simulated by high-resolution nested RCMs in present climate and in the climate change signal. Clim Dyn 40:443–464. https://doi.org/10.1007/s00382-012-1384-2
Article
Google Scholar
Di Luca A, de Elía R, Laprise R (2013b) Potential for small scale added value of RCM’s downscaled climate change signal. Clim Dyn 40:601–618. https://doi.org/10.1007/s00382-012-1415-z
Article
Google Scholar
Di Luca A, Argueso D, Evans JP, de Elia R, Laprise R (2016) Quantifying the overall added value of dynamical downscaling and the contribution from different spatial scales. J Geophys Res-Atmos 121:1575–1590. https://doi.org/10.1002/2015jd024009
Article
Google Scholar
Di Virgilio G, Wardell-Johnson GW, Robinson TP, Temple-Smith D, Hesford J (2018) Characterising fine-scale variation in plant species richness and endemism across topographically complex, semi-arid landscapes. J Arid Environ 156:59–68. https://doi.org/10.1016/j.jaridenv.2018.04.005
Article
Google Scholar
Di Virgilio G et al (2019) Evaluating reanalysis-driven CORDEX regional climate models over Australia: model performance and errors. Clim Dyn 53:2985–3005. https://doi.org/10.1007/s00382-019-04672-w
Article
Google Scholar
Diro GT, Tompkins AM, Bi X (2012) Dynamical downscaling of ECMWF Ensemble seasonal forecasts over East Africa with RegCM3. J Geophys Res. https://doi.org/10.1029/2011jd016997
Article
Google Scholar
Doms G, Baldauf M (2015) A description of the Nonhydrostatic Regional COSMO-Model Part I: dynamics and numerics. DWD, Offenbach, Germany, p 164
Google Scholar
Dunne JP et al (2012) GFDL's ESM2 global coupled climate-carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J Clim 25:6646–6665. https://doi.org/10.1175/jcli-d-11-00560.1
Article
Google Scholar
Ekström M, Grose MR, Whetton PH (2015) An appraisal of downscaling methods used in climate change research. Wiley Interdiscip Rev 6:301–319. https://doi.org/10.1002/wcc.339
Article
Google Scholar
Evans JP (2011) CORDEX—an international climate downscaling initiative. In: 19th international congress on modelling and simulation. Modelling & Simulation Society Australia & New Zealand, Christchurch, New Zealand
Evans J, Ekström M, Ji F (2012) Evaluating the performance of a WRF physics ensemble over South–East Australia. Clim Dyn 39:1241–1258. https://doi.org/10.1007/s00382-011-1244-5
Article
Google Scholar
Evans JP, Ji F, Lee C, Smith P, Argüeso D, Fita L (2014) Design of a regional climate modelling projection ensemble experiment; NARCliM. Geosci Model Dev 7:621–629. https://doi.org/10.5194/gmd-7-621-2014
Article
Google Scholar
Firth R, Kala J, Lyons TJ, Andrys J (2017) An analysis of regional climate simulations for Western Australia’s Wine Regions—Model evaluation and future climate projections. J Appl Meteorol Climatol 56:2113–2138. https://doi.org/10.1175/jamc-d-16-0333.1
Article
Google Scholar
Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183
Google Scholar
Giorgi F, Torma C, Coppola E, Ban N, Schar C, Somot S (2016) Enhanced summer convective rainfall at Alpine high elevations in response to climate warming. Nat Geosci 9:584-+. https://doi.org/10.1038/ngeo2761
Article
Google Scholar
Grose MR, Barnes-Keoghan I, Corney SP, White CJ, Holz GK, Bennett JC, Gaynor SM, Bindoff NL (2010) Climate futures for Tasmania: general climate impacts. Technical Report, Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Tasmania
Grose MR, Corney S, Katzfey J, Bennett J, Holz G, White C, Bindoff N (2013) A regional response in mean westerly circulation and rainfall to projected climate warming over Tasmania. Australia Clim Dyn 40:2035–2048. https://doi.org/10.1007/s00382-012-1405-1
Article
Google Scholar
Grose MR et al (2015a) Comparison of various climate change projections of eastern Australian rainfall. Australian Meteorol Oceanogr J 65:72–89
Article
Google Scholar
Grose MR, Moise AF, Timbal B, Katzfey JJ, Ekstrom M, Whetton PH (2015b) Climate projections for southern Australian cool-season rainfall: insights from a downscaling comparison. Climate Res 62:251–265. https://doi.org/10.3354/cr01276
Article
Google Scholar
Grose MR, Syktus J, Thatcher M, Evans JP, Ji F, Rafter T, Remenyi T (2019) The role of topography on projected rainfall change in mid-latitude mountain regions. Clim Dyn. https://doi.org/10.1007/s00382-019-04736-x
Article
Google Scholar
Hazeleger W et al (2010) EC-earth a seamless earth-system prediction approach in action. Bull Am Meteor Soc 91:1357–1363. https://doi.org/10.1175/2010bams2877.1
Article
Google Scholar
Hoffmann P, Katzfey JJ, McGregor JL, Thatcher M (2016) Bias and variance correction of sea surface temperatures used for dynamical downscaling. J Geophys Res Atmos 121:12877–12890. https://doi.org/10.1002/2016jd025383
Article
Google Scholar
Hope P, Timbal B, Hendon H, Ekström M, Potter N, Pearce K (2017) A synthesis of findings from the Victorian climate initiative (VicCl). Bureau of Meteorology, Melbourne, Victoria
Hsiang S et al (2017) Estimating economic damage from climate change in the United States. Science 356:1362–1368. https://doi.org/10.1126/science.aal4369
Article
Google Scholar
Jeong DI, Sushama L, Diro GT, Khaliq MN (2016) Projected changes to winter temperature characteristics over Canada based on an RCM ensemble. Clim Dyn 47:1351–1366. https://doi.org/10.1007/s00382-015-2906-5
Article
Google Scholar
Ji F, Ekström M, Evans J, Teng J (2014a) Evaluating rainfall patterns using physics scheme ensembles from a regional atmospheric model. Theor Appl Climatol 115:297–304. https://doi.org/10.1007/s00704-013-0904-2
Article
Google Scholar
Ji F, Ekström M, Evans JP, Teng J (2014b) Evaluating rainfall patterns using physics scheme ensembles from a regional atmospheric model. Theoret Appl Climatol 115:297–304. https://doi.org/10.1007/s00704-013-0904-2
Article
Google Scholar
Ji F, Evans JP, Teng J, Scorgie Y, Argüeso D, Di Luca A (2016) Evaluation of long-term precipitation and temperature weather research and forecasting simulations for southeast Australia. Climate Res 67:99–115. https://doi.org/10.3354/cr01366
Article
Google Scholar
Jones DA, Wang W, Fawcett R (2009) High-quality spatial climate data-sets for Australia. Aust Meteorol Oceanogr J 58:233–248
Article
Google Scholar
Jones MM et al (2016) Underestimated effects of climate on plant species turnover in the Southwest Australian Floristic Region. J Biogeogr 43:289–300. https://doi.org/10.1111/jbi.12628
Article
Google Scholar
Katzfey J et al (2016) High-resolution simulations for Vietnam—methodology and evaluation of current climate Asia-Pac. J Atmos Sci 52:91–106. https://doi.org/10.1007/s13143-016-0011-2
Article
Google Scholar
McGregor JL, Dix MR (2008) An updated description of the Conformal-Cubic atmospheric model. High resolution numerical modelling of the atmosphere and ocean. Springer, New York. https://doi.org/10.1007/978-0-387-49791-4_4
Book
Google Scholar
Meehl GA et al (2007) The WCRP CMIP3 multimodel dataset—a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. https://doi.org/10.1175/bams-88-9-1383
Article
Google Scholar
Meehl GA et al (2013) Climate change projections in CESM1(CAM5) compared to CCSM4. J Clim 26:6287–6308. https://doi.org/10.1175/jcli-d-12-00572.1
Article
Google Scholar
Olson R, Evans JP, Di Luca A, Argueso D (2016) The NARCliM project: model agreement and significance of climate projections. Clim Res 69:209–227. https://doi.org/10.3354/cr01403
Article
Google Scholar
Park C et al (2016) Evaluation of multiple regional climate models for summer climate extremes over East Asia. Clim Dyn 46:2469–2486. https://doi.org/10.1007/s00382-015-2713-z
Article
Google Scholar
Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. https://doi.org/10.5194/hess-11-1633-2007
Article
Google Scholar
Pielke RA Sr, Wilby RL (2012) Regional climate downscaling: What’s the point? Eos Trans Am Geophys Union 93:52–53. https://doi.org/10.1029/2012eo050008
Article
Google Scholar
Schrodin E, Heise E (2001) The multi-layer version of the DWD soil model TERRA_LM. COSMO Technical Report No.2, pp 16, Sep 2001, DWD, Offenbach, Germany
Schulze R (2000) Transcending scales of space and time in impact studies of climate and climate change on agrohydrological responses. Agric Ecosyst Environ 82:185–212. https://doi.org/10.1016/s0167-8809(00)00226-7
Article
Google Scholar
Šeparović L et al (2013) Present climate and climate change over North America as simulated by the fifth-generation Canadian regional climate model. Clim Dyn 41:3167–3201. https://doi.org/10.1007/s00382-013-1737-5
Article
Google Scholar
Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2008) A description of the advanced research WRF Version 3. NCAR Tech Note NCAR/TN-475+STR. NCAR. Boulder, CO
Solman SA et al (2013) Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties. Clim Dyn 41:1139–1157. https://doi.org/10.1007/s00382-013-1667-2
Article
Google Scholar
Tadross M, Jack C, Hewitson B (2005) On RCM-based projections of change in southern African summer climate. Geophys Res Lett 32:4. https://doi.org/10.1029/2005gl024460
Article
Google Scholar
Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. https://doi.org/10.1175/bams-d-11-00094.1
Article
Google Scholar
Thatcher M, McGregor JL (2009) Using a scale-selective filter for dynamical downscaling with the conformal cubic atmospheric model. Mon Weather Rev 137:1742–1752. https://doi.org/10.1175/2008mwr2599.1
Article
Google Scholar
Thevakaran A, McGregor JL, Katzfey J, Hoffmann P, Suppiah R, Sonnadara DUJ (2016) An assessment of CSIRO Conformal Cubic Atmospheric Model simulations over Sri Lanka. Clim Dyn 46:1861–1875. https://doi.org/10.1007/s00382-015-2680-4
Article
Google Scholar
Torma C, Giorgi F, Coppola E (2015) Added value of regional climate modeling over areas characterized by complex terrain—Precipitation over the Alps. J Geophys Res 120:3957–3972. https://doi.org/10.1002/2014JD022781
Article
Google Scholar
Tuinenburg OA, de Vries JPR (2017) Irrigation patterns resemble ERA-interim reanalysis soil moisture additions. Geophys Res Lett 44:10341–10348. https://doi.org/10.1002/2017gl074884
Article
Google Scholar
Voldoire A et al (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121. https://doi.org/10.1007/s00382-011-1259-y
Article
Google Scholar
van Vuuren DP et al (2011) The representative concentration pathways: an overview. Clim Change 109:5–31. https://doi.org/10.1007/s10584-011-0148-z
Article
Google Scholar
Watanabe M et al (2010) Improved climate simulation by MIROC5. Mean states, variability, and climate sensitivity. J Clim 23:6312–6335. https://doi.org/10.1175/2010jcli3679.1
Article
Google Scholar
White CJ et al (2013) On regional dynamical downscaling for the assessment and projection of temperature and precipitation extremes across Tasmania. Australia Clim Dyn 41:3145–3165
Article
Google Scholar
Wilby RL, Dessai S (2010) Robust adaptation to climate change. Weather 65:180–185. https://doi.org/10.1002/wea.543
Article
Google Scholar
Xue Y, Janjic Z, Dudhia J, Vasic R, De Sales F (2014) A review on regional dynamical downscaling in intraseasonal to seasonal simulation/prediction and major factors that affect downscaling ability. Atmos Res 147–148:68–85. https://doi.org/10.1016/j.atmosres.2014.05.001
Article
Google Scholar
Zanchettin D, Rubino A, Matei D, Bothe O, Jungclaus JH (2013) Multidecadal-to-centennial SST variability in the MPI-ESM simulation ensemble for the last millennium. Clim Dyn 40:1301–1318. https://doi.org/10.1007/s00382-012-1361-9
Article
Google Scholar