Realised added value in dynamical downscaling of Australian climate change

Abstract

Coarse resolution global climate models (GCMs) cannot resolve fine-scale drivers of regional climate, which is the scale where climate adaptation decisions are made. Regional climate models (RCMs) generate high-resolution projections by dynamically downscaling GCM outputs. However, evidence of where and when downscaling provides new information about both the current climate (added value, AV) and projected climate change signals, relative to driving data, is lacking. Seasons and locations where CORDEX-Australasia ERA-Interim and GCM-driven RCMs show AV for mean and extreme precipitation and temperature are identified. A new concept is introduced, ‘realised added value’, that identifies where and when RCMs simultaneously add value in the present climate and project a different climate change signal, thus suggesting plausible improvements in future climate projections by RCMs. ERA-Interim-driven RCMs add value to the simulation of summer-time mean precipitation, especially over northern and eastern Australia. GCM-driven RCMs show AV for precipitation over complex orography in south-eastern Australia during winter and widespread AV for mean and extreme minimum temperature during both seasons, especially over coastal and high-altitude areas. RCM projections of decreased winter rainfall over the Australian Alps and decreased summer rainfall over northern Australia are collocated with notable realised added value. Realised added value averaged across models, variables, seasons and statistics is evident across the majority of Australia and shows where plausible improvements in future climate projections are conferred by RCMs. This assessment of varying RCM capabilities to provide realised added value to GCM projections can be applied globally to inform climate adaptation and model development.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Arora VK et al (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett. https://doi.org/10.1029/2010gl046270

    Article  Google Scholar 

  2. Bennett JC et al (2013) Performance of an empirical bias-correction of a high-resolution climate dataset. Int J Climatol. https://doi.org/10.1002/joc.3830

    Article  Google Scholar 

  3. Bentsen M et al (2013) The Norwegian Earth System Model, NorESM1-M - Part 1: Description and basic evaluation of the physical climate. Geosci Model Dev 6:687–720. https://doi.org/10.5194/gmd-6-687-2013

    Article  Google Scholar 

  4. Bi DH et al (2013) The ACCESS coupled model: description, control climate and evaluation. Aust Meteorol Oceanogr J 63:41–64. https://doi.org/10.22499/2.6301.004

    Article  Google Scholar 

  5. Brown JR, Moise AF, Colman R, Zhang HQ (2016) Will a warmer world mean a wetter or drier Australian Monsoon? J Clim 29:4577–4596. https://doi.org/10.1175/jcli-d-15-0695.1

    Article  Google Scholar 

  6. Brown JR, Moise AF, Colman RA (2017) Projected increases in daily to decadal variability of Asian–Australian monsoon rainfall. Geophys Res Lett 44:5683–5690. https://doi.org/10.1002/2017gl073217

    Article  Google Scholar 

  7. Collins WJ et al (2011) Development and evaluation of an earth-system model-HadGEM2. Geosci Model Dev 4:1051–1075. https://doi.org/10.5194/gmd-4-1051-2011

    Article  Google Scholar 

  8. Corney SP et al (2013) Performance of downscaled regional climate simulations using a variable-resolution regional climate model: tasmania as a test case. J Geophys Res 118:1–15. https://doi.org/10.1002/2013JD020087

    Article  Google Scholar 

  9. CSIRO, Bureau of Meteorology (2015) Climate change in Australia, Technical Report. www.climatechangeinaustralia.gov.au. Melbourne Australia

  10. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  11. Dickinson RE et al (2006) The community land model and its climate statistics as a component of the community climate system model. J Clim 19:2302–2324. https://doi.org/10.1175/jcli3742.1

    Article  Google Scholar 

  12. Di Luca A, de Elia R, Laprise R (2012) Potential for added value in precipitation simulated by high-resolution nested Regional Climate Models and observations. Clim Dyn 38:1229–1247. https://doi.org/10.1007/s00382-011-1068-3

    Article  Google Scholar 

  13. Di Luca A, de Elia R, Laprise R (2013a) Potential for added value in temperature simulated by high-resolution nested RCMs in present climate and in the climate change signal. Clim Dyn 40:443–464. https://doi.org/10.1007/s00382-012-1384-2

    Article  Google Scholar 

  14. Di Luca A, de Elía R, Laprise R (2013b) Potential for small scale added value of RCM’s downscaled climate change signal. Clim Dyn 40:601–618. https://doi.org/10.1007/s00382-012-1415-z

    Article  Google Scholar 

  15. Di Luca A, Argueso D, Evans JP, de Elia R, Laprise R (2016) Quantifying the overall added value of dynamical downscaling and the contribution from different spatial scales. J Geophys Res-Atmos 121:1575–1590. https://doi.org/10.1002/2015jd024009

    Article  Google Scholar 

  16. Di Virgilio G, Wardell-Johnson GW, Robinson TP, Temple-Smith D, Hesford J (2018) Characterising fine-scale variation in plant species richness and endemism across topographically complex, semi-arid landscapes. J Arid Environ 156:59–68. https://doi.org/10.1016/j.jaridenv.2018.04.005

    Article  Google Scholar 

  17. Di Virgilio G et al (2019) Evaluating reanalysis-driven CORDEX regional climate models over Australia: model performance and errors. Clim Dyn 53:2985–3005. https://doi.org/10.1007/s00382-019-04672-w

    Article  Google Scholar 

  18. Diro GT, Tompkins AM, Bi X (2012) Dynamical downscaling of ECMWF Ensemble seasonal forecasts over East Africa with RegCM3. J Geophys Res. https://doi.org/10.1029/2011jd016997

    Article  Google Scholar 

  19. Doms G, Baldauf M (2015) A description of the Nonhydrostatic Regional COSMO-Model Part I: dynamics and numerics. DWD, Offenbach, Germany, p 164

    Google Scholar 

  20. Dunne JP et al (2012) GFDL's ESM2 global coupled climate-carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J Clim 25:6646–6665. https://doi.org/10.1175/jcli-d-11-00560.1

    Article  Google Scholar 

  21. Ekström M, Grose MR, Whetton PH (2015) An appraisal of downscaling methods used in climate change research. Wiley Interdiscip Rev 6:301–319. https://doi.org/10.1002/wcc.339

    Article  Google Scholar 

  22. Evans JP (2011) CORDEX—an international climate downscaling initiative. In: 19th international congress on modelling and simulation. Modelling & Simulation Society Australia & New Zealand, Christchurch, New Zealand

  23. Evans J, Ekström M, Ji F (2012) Evaluating the performance of a WRF physics ensemble over South–East Australia. Clim Dyn 39:1241–1258. https://doi.org/10.1007/s00382-011-1244-5

    Article  Google Scholar 

  24. Evans JP, Ji F, Lee C, Smith P, Argüeso D, Fita L (2014) Design of a regional climate modelling projection ensemble experiment; NARCliM. Geosci Model Dev 7:621–629. https://doi.org/10.5194/gmd-7-621-2014

    Article  Google Scholar 

  25. Firth R, Kala J, Lyons TJ, Andrys J (2017) An analysis of regional climate simulations for Western Australia’s Wine Regions—Model evaluation and future climate projections. J Appl Meteorol Climatol 56:2113–2138. https://doi.org/10.1175/jamc-d-16-0333.1

    Article  Google Scholar 

  26. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183

    Google Scholar 

  27. Giorgi F, Torma C, Coppola E, Ban N, Schar C, Somot S (2016) Enhanced summer convective rainfall at Alpine high elevations in response to climate warming. Nat Geosci 9:584-+. https://doi.org/10.1038/ngeo2761

    Article  Google Scholar 

  28. Grose MR, Barnes-Keoghan I, Corney SP, White CJ, Holz GK, Bennett JC, Gaynor SM, Bindoff NL (2010) Climate futures for Tasmania: general climate impacts. Technical Report, Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Tasmania

  29. Grose MR, Corney S, Katzfey J, Bennett J, Holz G, White C, Bindoff N (2013) A regional response in mean westerly circulation and rainfall to projected climate warming over Tasmania. Australia Clim Dyn 40:2035–2048. https://doi.org/10.1007/s00382-012-1405-1

    Article  Google Scholar 

  30. Grose MR et al (2015a) Comparison of various climate change projections of eastern Australian rainfall. Australian Meteorol Oceanogr J 65:72–89

    Article  Google Scholar 

  31. Grose MR, Moise AF, Timbal B, Katzfey JJ, Ekstrom M, Whetton PH (2015b) Climate projections for southern Australian cool-season rainfall: insights from a downscaling comparison. Climate Res 62:251–265. https://doi.org/10.3354/cr01276

    Article  Google Scholar 

  32. Grose MR, Syktus J, Thatcher M, Evans JP, Ji F, Rafter T, Remenyi T (2019) The role of topography on projected rainfall change in mid-latitude mountain regions. Clim Dyn. https://doi.org/10.1007/s00382-019-04736-x

    Article  Google Scholar 

  33. Hazeleger W et al (2010) EC-earth a seamless earth-system prediction approach in action. Bull Am Meteor Soc 91:1357–1363. https://doi.org/10.1175/2010bams2877.1

    Article  Google Scholar 

  34. Hoffmann P, Katzfey JJ, McGregor JL, Thatcher M (2016) Bias and variance correction of sea surface temperatures used for dynamical downscaling. J Geophys Res Atmos 121:12877–12890. https://doi.org/10.1002/2016jd025383

    Article  Google Scholar 

  35. Hope P, Timbal B, Hendon H, Ekström M, Potter N, Pearce K (2017) A synthesis of findings from the Victorian climate initiative (VicCl). Bureau of Meteorology, Melbourne, Victoria

  36. Hsiang S et al (2017) Estimating economic damage from climate change in the United States. Science 356:1362–1368. https://doi.org/10.1126/science.aal4369

    Article  Google Scholar 

  37. Jeong DI, Sushama L, Diro GT, Khaliq MN (2016) Projected changes to winter temperature characteristics over Canada based on an RCM ensemble. Clim Dyn 47:1351–1366. https://doi.org/10.1007/s00382-015-2906-5

    Article  Google Scholar 

  38. Ji F, Ekström M, Evans J, Teng J (2014a) Evaluating rainfall patterns using physics scheme ensembles from a regional atmospheric model. Theor Appl Climatol 115:297–304. https://doi.org/10.1007/s00704-013-0904-2

    Article  Google Scholar 

  39. Ji F, Ekström M, Evans JP, Teng J (2014b) Evaluating rainfall patterns using physics scheme ensembles from a regional atmospheric model. Theoret Appl Climatol 115:297–304. https://doi.org/10.1007/s00704-013-0904-2

    Article  Google Scholar 

  40. Ji F, Evans JP, Teng J, Scorgie Y, Argüeso D, Di Luca A (2016) Evaluation of long-term precipitation and temperature weather research and forecasting simulations for southeast Australia. Climate Res 67:99–115. https://doi.org/10.3354/cr01366

    Article  Google Scholar 

  41. Jones DA, Wang W, Fawcett R (2009) High-quality spatial climate data-sets for Australia. Aust Meteorol Oceanogr J 58:233–248

    Article  Google Scholar 

  42. Jones MM et al (2016) Underestimated effects of climate on plant species turnover in the Southwest Australian Floristic Region. J Biogeogr 43:289–300. https://doi.org/10.1111/jbi.12628

    Article  Google Scholar 

  43. Katzfey J et al (2016) High-resolution simulations for Vietnam—methodology and evaluation of current climate Asia-Pac. J Atmos Sci 52:91–106. https://doi.org/10.1007/s13143-016-0011-2

    Article  Google Scholar 

  44. McGregor JL, Dix MR (2008) An updated description of the Conformal-Cubic atmospheric model. High resolution numerical modelling of the atmosphere and ocean. Springer, New York. https://doi.org/10.1007/978-0-387-49791-4_4

    Google Scholar 

  45. Meehl GA et al (2007) The WCRP CMIP3 multimodel dataset—a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. https://doi.org/10.1175/bams-88-9-1383

    Article  Google Scholar 

  46. Meehl GA et al (2013) Climate change projections in CESM1(CAM5) compared to CCSM4. J Clim 26:6287–6308. https://doi.org/10.1175/jcli-d-12-00572.1

    Article  Google Scholar 

  47. Olson R, Evans JP, Di Luca A, Argueso D (2016) The NARCliM project: model agreement and significance of climate projections. Clim Res 69:209–227. https://doi.org/10.3354/cr01403

    Article  Google Scholar 

  48. Park C et al (2016) Evaluation of multiple regional climate models for summer climate extremes over East Asia. Clim Dyn 46:2469–2486. https://doi.org/10.1007/s00382-015-2713-z

    Article  Google Scholar 

  49. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. https://doi.org/10.5194/hess-11-1633-2007

    Article  Google Scholar 

  50. Pielke RA Sr, Wilby RL (2012) Regional climate downscaling: What’s the point? Eos Trans Am Geophys Union 93:52–53. https://doi.org/10.1029/2012eo050008

    Article  Google Scholar 

  51. Schrodin E, Heise E (2001) The multi-layer version of the DWD soil model TERRA_LM. COSMO Technical Report No.2, pp 16, Sep 2001, DWD, Offenbach, Germany

  52. Schulze R (2000) Transcending scales of space and time in impact studies of climate and climate change on agrohydrological responses. Agric Ecosyst Environ 82:185–212. https://doi.org/10.1016/s0167-8809(00)00226-7

    Article  Google Scholar 

  53. Šeparović L et al (2013) Present climate and climate change over North America as simulated by the fifth-generation Canadian regional climate model. Clim Dyn 41:3167–3201. https://doi.org/10.1007/s00382-013-1737-5

    Article  Google Scholar 

  54. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2008) A description of the advanced research WRF Version 3. NCAR Tech Note NCAR/TN-475+STR. NCAR. Boulder, CO

  55. Solman SA et al (2013) Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties. Clim Dyn 41:1139–1157. https://doi.org/10.1007/s00382-013-1667-2

    Article  Google Scholar 

  56. Tadross M, Jack C, Hewitson B (2005) On RCM-based projections of change in southern African summer climate. Geophys Res Lett 32:4. https://doi.org/10.1029/2005gl024460

    Article  Google Scholar 

  57. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. https://doi.org/10.1175/bams-d-11-00094.1

    Article  Google Scholar 

  58. Thatcher M, McGregor JL (2009) Using a scale-selective filter for dynamical downscaling with the conformal cubic atmospheric model. Mon Weather Rev 137:1742–1752. https://doi.org/10.1175/2008mwr2599.1

    Article  Google Scholar 

  59. Thevakaran A, McGregor JL, Katzfey J, Hoffmann P, Suppiah R, Sonnadara DUJ (2016) An assessment of CSIRO Conformal Cubic Atmospheric Model simulations over Sri Lanka. Clim Dyn 46:1861–1875. https://doi.org/10.1007/s00382-015-2680-4

    Article  Google Scholar 

  60. Torma C, Giorgi F, Coppola E (2015) Added value of regional climate modeling over areas characterized by complex terrain—Precipitation over the Alps. J Geophys Res 120:3957–3972. https://doi.org/10.1002/2014JD022781

    Article  Google Scholar 

  61. Tuinenburg OA, de Vries JPR (2017) Irrigation patterns resemble ERA-interim reanalysis soil moisture additions. Geophys Res Lett 44:10341–10348. https://doi.org/10.1002/2017gl074884

    Article  Google Scholar 

  62. Voldoire A et al (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121. https://doi.org/10.1007/s00382-011-1259-y

    Article  Google Scholar 

  63. van Vuuren DP et al (2011) The representative concentration pathways: an overview. Clim Change 109:5–31. https://doi.org/10.1007/s10584-011-0148-z

    Article  Google Scholar 

  64. Watanabe M et al (2010) Improved climate simulation by MIROC5. Mean states, variability, and climate sensitivity. J Clim 23:6312–6335. https://doi.org/10.1175/2010jcli3679.1

    Article  Google Scholar 

  65. White CJ et al (2013) On regional dynamical downscaling for the assessment and projection of temperature and precipitation extremes across Tasmania. Australia Clim Dyn 41:3145–3165

    Article  Google Scholar 

  66. Wilby RL, Dessai S (2010) Robust adaptation to climate change. Weather 65:180–185. https://doi.org/10.1002/wea.543

    Article  Google Scholar 

  67. Xue Y, Janjic Z, Dudhia J, Vasic R, De Sales F (2014) A review on regional dynamical downscaling in intraseasonal to seasonal simulation/prediction and major factors that affect downscaling ability. Atmos Res 147–148:68–85. https://doi.org/10.1016/j.atmosres.2014.05.001

    Article  Google Scholar 

  68. Zanchettin D, Rubino A, Matei D, Bothe O, Jungclaus JH (2013) Multidecadal-to-centennial SST variability in the MPI-ESM simulation ensemble for the last millennium. Clim Dyn 40:1301–1318. https://doi.org/10.1007/s00382-012-1361-9

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported through funding from the Earth Systems and Climate Change Hub of the Australian Government’s National Environmental Science Program. We thank Louise Wilson at the Bureau of Meteorology for constructive feedback on this manuscript.

Author information

Affiliations

Authors

Contributions

All co-authors collaborated to devise the scope and aims of this project. GDV led the preparation of this manuscript, with contributions from all co-authors. AD prepared the climatological and extreme statistics. AD, GDV and JPE defined the RAV concept and JPE conceived the RAV metric. GDV performed the analyses. All co-authors discussed and provided interpretations of analysis results. MT ran the CCAM simulations. JPE and AD ran the WRF simulations.

Corresponding author

Correspondence to Giovanni Di Virgilio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 12691 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Di Virgilio, G., Evans, J.P., Di Luca, A. et al. Realised added value in dynamical downscaling of Australian climate change. Clim Dyn 54, 4675–4692 (2020). https://doi.org/10.1007/s00382-020-05250-1

Download citation

Keywords

  • Climate impact adaptation
  • Climate extremes
  • CORDEX-Australasia
  • Precipitation
  • Regional climate modelling
  • Temperature