Skip to main content

Advertisement

Log in

The impact of the extratropics on ENSO diversity and predictability

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Several mechanisms originating in the Northern (NH) and Southern Hemisphere (SH) are argued to have the ability to stochastically force ENSO events. In this study, the impact of these extratropical mechanisms on ENSO diversity and predictability are evaluated using linear regression methodologies from information theory and machine learning applied to observational data. Overfitting is often an issue when investigating different extratropical mechanisms, as they are highly correlated in both space and time. The statistical methods in this study are specifically designed to address this issue. Results show that at 1-year lead-times, the extratropics are related to development of Central Pacific (CP), but not Eastern Pacific (EP) ENSO events. In boreal winter, the SH extratropics contribute to the predictability of CP ENSO, much further in advance than previous studies have indicated. The dominant NH predictor of CP ENSO from one winter to the next is identified as a sea surface temperature dipole in the Western North Pacific. Finally, separation of CP ENSO into its extratropical and tropical related components demonstrates that CP ENSO events with strong forcing from the extratropics start one season earlier than events primarily forced from the Tropics and thus have the potential for longer lead predictability, up to 1-year in advance of a CP ENSO event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. https://www.esrl.noaa.gov/psd/.

  2. https://iridl.ldeo.columbia.edu/.

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) International symposium on information theory, pp 267–281

  • Alexander MA, Matrosova L, Penland C, Scott JD, Chang P (2008) Forecasting pacific SSTs: linear inverse model predictions of the PDO. J Clim 21(2):385–402

    Google Scholar 

  • Alexander MA, Vimont DJ, Chang P, Scott JD (2010) The impact of extratropical atmospheric variability on ENSO: testing the seasonal footprinting mechanism using coupled model experiments. J Clim 23(11):2885–2901

    Google Scholar 

  • Anderson BT (2007) On the joint role of subtropical atmospheric variability and equatorial subsurface heat content anomalies in initiating the onset of ENSO events. J Clim 20:1593–1598

    Google Scholar 

  • Anderson BT, Furtado JC, Cobb KM, Di Lorenzo E (2013a) Extratropical forcing of El Niño–Southern Oscillation asymmetry. Geophys Res Lett 40(18):4916–4921

    Google Scholar 

  • Anderson BT, Perez RC, Karspeck A (2013b) Triggering of El Niño onset through trade wind-induced charging of the equatorial Pacific. Geophys Res Lett 40(6):1212–1216

    Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112(C11):C11,007

    Google Scholar 

  • Barnston AG, Tippett MK, Ranganathan M et al (2019) Deterministic skill of ENSO predictions from the North American Multimodel Ensemble. Clim Dyn 53:7215–7234. https://doi.org/10.1007/s00382-017-3603-3

    Article  Google Scholar 

  • Barnston AG, Tippett MK, L’Heureux ML, Li S, DeWitt DG (2012) Skill of real-time seasonal ENSO model predictions during 2002-11: is our capability increasing? Bull Am Meteorol Soc 93(5):631–651

    Google Scholar 

  • Bond NA (2003) Recent shifts in the state of the North Pacific. Geophys Res Lett 30(23):2183

    Google Scholar 

  • Capotondi A, Wittenberg AT, Newman M, Di Lorenzo E, Yu JY, Braconnot P, Cole J, Dewitte B, Giese B, Guilyardi E, Jin FF, Karnauskas K, Kirtman B, Lee T, Schneider N, Xue Y, Yeh SW (2015) Understanding ENSO diversity. Bull Am Meteorol Soc 96(6):921–938

    Google Scholar 

  • Carton JA, Giese BS (2008) SODA: a reanalysis of ocean climate. Mon Weather Rev 136:2999–3017. https://doi.org/10.1175/2007MWR1978.1

    Article  Google Scholar 

  • Chang P, Zhang L, Saravanan R, Vimont DJ, Chiang JCH, Ji L, Seidel H, Tippett MK (2007) Pacific Meridional Mode and El Niño–Southern Oscillation. Geophys Res Lett 34(16):L16,608

    Google Scholar 

  • Chiang JCH, Vimont DJ (2004) Analogous pacific and atlantic meridional modes of tropical atmosphere–ocean variability. J Clim 17(21):4143–4158

    Google Scholar 

  • Deser C, Phillips AS, Tomas RA, Okumura YM, Alexander MA, Capotondi A, Scott JD, Kwon YO, Ohba M (2012) ENSO and pacific decadal variability in the community climate system model version 4. J Clim 25(8):2622–2651

    Google Scholar 

  • Di Lorenzo E, Liguori G, Schneider N, Furtado JC, Anderson BT, Alexander MA (2015) ENSO and meridional modes: a null hypothesis for Pacific climate variability. Geophys Res Lett 42(21):9440–9448. https://doi.org/10.1002/2015GL066281

    Article  Google Scholar 

  • Ding R, Li J, Tseng Y (2015a) The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Clim Dyn 44:2017–2034. https://doi.org/10.1007/s00382-014-2303-5

    Google Scholar 

  • Ding R, Li J, Tseng Y-h, Sun C, Guo Y (2015b) The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. J Geophys Res Atmos 120:27–45. https://doi.org/10.1002/2014JD022221

    Article  Google Scholar 

  • Ding R, Li J, Tseng Y, Sun C, Xie F (2017) Joint impact of North and South Pacific extratropical atmospheric variability on the onset of ENSO events. J Geophys Res 122(1):279–298. https://doi.org/10.1002/2016JD025502

    Article  Google Scholar 

  • Ham YG, Kug JS, Park JY, Jin FF (2013) Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat Geosci 6(1):1–5

    Google Scholar 

  • Hartten LM (2007) Synoptic settings of westerly wind bursts. J Gephys Res 30:16

    Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer series in statistics. Springer, New York

    Google Scholar 

  • Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54(7):811–829. https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2

    Article  Google Scholar 

  • Jin EK, Kinter JL III (2009) Characteristics of tropical Pacific SST predictability in coupled GCM forecasts using the NCEP CFS. Clim Dyn 32:675–691

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–472

    Google Scholar 

  • Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22(3):615–632

    Google Scholar 

  • Kirtman BP, Min D, Infanti JM, Kinter JL III, Paolino DA, Zhang Q, Van Den Dool H, Saha S, Mendez MP, Becker E, Peng P, Tripp P, Huang J, DeWitt DG, Tippett MK, Barnston AG, Li S, Rosati A, Schubert SD, Rienecker M, Suarez M, Li ZE, Marshak J, Lim YK, Tribbia J, Pegion K, Merryfield WJ, Denis B, Wood EF (2014) The North American multimodel ensemble: phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull Am Meteorol Soc 95(4):585–601

    Google Scholar 

  • Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22(6):1499–1515

    Google Scholar 

  • Kug JS, Choi J, An SI, Jin FF, Wittenberg AT (2010) Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. J Clim 23(5):1226–1239

    Google Scholar 

  • Larkin NK (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32(16):L16,705

    Google Scholar 

  • Larson S, Kirtman B (2013) The Pacific Meridional Mode as a trigger for ENSO in a high-resolution coupled model. Geophys Res Lett 40(12):3189–3194

    Google Scholar 

  • Larson SM, Kirtman BP (2014) The Pacific Meridional Mode as an ENSO precursor and predictor in the North American multimodel ensemble. J Clim 27(18):7018–7032

    Google Scholar 

  • Larson SM, Pegion KV, Kirtman BP (2018) The south Pacific Meridional Mode as a thermally driven source of ENSO amplitude modulation and uncertainty. J Clim 31(13):5127–5145

    Google Scholar 

  • Linkin ME, Nigam S (2008) The north Pacific Oscillation–west Pacific teleconnection pattern: mature-phase structure and winter impacts. J Clim 21:1979–1997. https://doi.org/10.1175/2007JCLI2048.1

    Article  Google Scholar 

  • McPhaden MJ (2003) Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys Res Lett 30:1480. https://doi.org/10.1029/2003GL016872

    Article  Google Scholar 

  • McPhaden MJ (1999) Genesis and evolution of the 1997–98 El Niño. Science 283(5404):950–954

    Google Scholar 

  • McPhaden MJ, Yu X (1999) Equatorial waves and the 1997–98 El Niño. Geophys Res Lett 26(19):2961–2964

    Google Scholar 

  • Min Q, Su J, Zhang R, Rong X (2015) What hindered the El Niño pattern in 2014? Geophys Res Lett 42:6762–6770

    Google Scholar 

  • Min Q, Su J, Zhang R (2017) Impact of the south and north Pacific Meridional Modes on the El Niño–Southern Oscillation: observational analysis and comparison. J Clim 30:1705–1720. https://doi.org/10.1175/JCLI-D-16-0063.1

    Article  Google Scholar 

  • National Research Council (2010) Assessment of intraseasonal to interannual climate prediction and predictability. National Academies Press, Washington, DC

    Google Scholar 

  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  • Pegion K, Alexander M (2013) The seasonal footprinting mechanism in CFSv2: simulation and impact on ENSO prediction. Clim Dyn 41:1671–1683

    Google Scholar 

  • Pegion KV, Selman C (2017) Patterns of climate extremes trends and mechanisms, extratropical precursors of the El Niño Southern Oscillation. AGU/Wiley-Blackwell, New York

    Google Scholar 

  • Penland C, Sardeshmukh PD (1995) The optimal growth of tropical sea surface temperature anomalies. J Clim 8:1999–2024

    Google Scholar 

  • Philander SG, Fedorov A (2003) Is El Niño sporadic or cyclic? Ann Rev Earth Planet Sci 31:579–594

    Google Scholar 

  • Qin J, Ding R, Wu Z et al (2017) Relationships between the extratropical ENSO precursor and leading modes of atmospheric variability in the Southern Hemisphere. Adv Atmos Sci 34:360–370. https://doi.org/10.1007/s00376-016-6016-z

    Google Scholar 

  • Rogers JC (1981) The north Pacific Oscillation. J Climatol 1(1):39–57. https://doi.org/10.1002/joc.3370010106

    Article  Google Scholar 

  • Seiki A, Takayabu YN (2007) Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: statistics. Mon Weather Rev 135:3325–3345

    Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Google Scholar 

  • Su J, Xiang B, Wang B, Li T (2014) Abrupt termination of the 2012 Pacific warming and its implication on ENSO prediction. Geophys Res Lett 41:9058–9064

    Google Scholar 

  • Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45(21):3283–3287

    Google Scholar 

  • Takahashi K, Montecinos A (2011) ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys Res Lett 38(L10):704

    Google Scholar 

  • Thompson CJ, Battisti DS (2000) A linear stochastic dynamical model of ENSO. Part I: model development. J Clim 13(15):2818–2832

    Google Scholar 

  • Thompson CJ, Battisti DS (2001) A linear stochastic dynamical model of ENSO. Part II: analysis. J Clim 14(4):445–466

    Google Scholar 

  • Torrence C, Webster PJ (1998) The annual cycle of persistence in the El Nño/Southern Oscillation. Q J R Meteorol Soc 124:1985–2004

    Google Scholar 

  • Trenberth KE, Stepaniak DP (2001) Indices of el Niño evolution. J Clim 14(8):1697–1701

    Google Scholar 

  • Vimont DJ (2010) Transient growth of thermodynamically coupled variations in the tropics under an equatorially symmetric mean state. J Clim 23:5771–5789. https://doi.org/10.1175/2010JCLI3532.1

    Article  Google Scholar 

  • Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28(20):3923

    Google Scholar 

  • Vimont DJ, Wallace JM, Battisti DS (2003) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Clim 16(16):2668–2675

    Google Scholar 

  • Vimont DJ, Alexander M, Fontaine A (2009) Midlatitude excitation of tropical variability in the Pacific: the role of thermodynamic coupling and seasonality. J Clim 22:518–534

    Google Scholar 

  • Vimont DJ, Alexander MA, Newman M (2014) Optimal growth of central and east Pacific ENSO events. Geophys Res Lett 41(11):4027–4034

    Google Scholar 

  • Wang S-Y, L'Heureux M, Chia H-H (2012) ENSO prediction one year in advance using western North Pacific sea surface temperatures. Geophys Res Lett 39:L05702. https://doi.org/10.1029/2012GL050909

    Article  Google Scholar 

  • Wang S-Y, L’Heureux M, Yoon J-H (2013) Are greenhouse gases changing ENSO precursors in the Western North Pacific? J Clim 26:6309–6322. https://doi.org/10.1175/JCLI-D-12-00360.1

    Google Scholar 

  • Wu S, Wu L, Liu Q, Xie S-P (2009) Development processes of the Tropical Pacific meridional mode. Adv Atmos Sci 27(1):95–99. https://doi.org/10.1007/s00376-009-8067-x

    Article  Google Scholar 

  • Wyrtki K (1975) El Niño-the dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J Phys Oceanogr 5:572–584

    Google Scholar 

  • Xie SP, Philander SGH (1994) A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A 46(4):340–350. https://doi.org/10.1034/j.1600-0870.1994.t01-1-00001.x. http://tellusa.net/index.php/tellusa/article/view/15484

    Google Scholar 

  • Xue Y, Chen M, Kumar A, Hu ZZ, Wang W (2013) Prediction skill and bias of tropical Pacific sea surface temperatures in the NCEP Climate Forecast System version 2. J Clim 26:5358–5378

    Google Scholar 

  • You Y, Furtado JC (2017) The role of South Pacific atmospheric variability in the development of different types of ENSO. Geophys Res Lett 44(14):7438–7446

    Google Scholar 

  • You Y, Furtado JC (2018) The South Pacific Meridional Mode and its role in tropical Pacific climate variability. J Clim 31:10,141–10,163

    Google Scholar 

  • Yu JY, Kim ST (2011) Relationships between extratropical sea level pressure variations and the central Pacific and Eastern Pacific types of ENSO. J Clim 24(3):708–720

    Google Scholar 

  • Yu JY, Paek H (2015) Precursors of ENSO beyond the tropical Pacific. US CLIVAR Var 13(Winter):15–20

    Google Scholar 

  • Yu L, Rienecker MM (1998) Evidence of an extratropical atmospheric influence during the onset of the 1997–98 El Niño. Geophys Res Lett 25(18):3537–3540

    Google Scholar 

  • Yu JY, Kao HY, Lee T (2010) Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J Clim 23:2869–2884

    Google Scholar 

  • Yu J-Y, Zou Y, Kim ST, Lee T (2012) The changing impact of El Niño on US winter temperatures. Geophys Res Lett. 39:L15702. https://doi.org/10.1029/2012GL052483

    Article  Google Scholar 

  • Zhang L, Chang P, Ji L (2009) Linking the Pacific meridional mode to ENSO: coupled model analysis. J Clim 22:3488–3505. https://doi.org/10.1175/2008JCLI2473.1

    Article  Google Scholar 

  • Zhang H, Clement A, Di Nezio P (2014a) The South Pacific Meridional Mode: a mechanism for ENSO-like variability. J Clim 27(2):769–783

    Google Scholar 

  • Zhang H, Deser C, Clement A, Tomas R (2014b) Equatorial signatures of the Pacific Meridional Modes: dependence on mean climate state. Geophys Res Lett 41(2):568–574. https://doi.org/10.1002/2013GL058842

    Article  Google Scholar 

Download references

Acknowledgements

KP thanks T. DelSole for helpful discussions regarding model selection methodologies. NCEP/NCAR Reanalysis and ERSST data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at https://www.esrl.noaa.gov/psd/. SODA data was obtained from the International Research Institute for Climate and Society Data Library (https://iridl.ldeo.columbia.edu/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathy Pegion.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1316 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pegion, K., Selman, C.M., Larson, S. et al. The impact of the extratropics on ENSO diversity and predictability. Clim Dyn 54, 4469–4484 (2020). https://doi.org/10.1007/s00382-020-05232-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05232-3

Keywords