Abstract
Several mechanisms originating in the Northern (NH) and Southern Hemisphere (SH) are argued to have the ability to stochastically force ENSO events. In this study, the impact of these extratropical mechanisms on ENSO diversity and predictability are evaluated using linear regression methodologies from information theory and machine learning applied to observational data. Overfitting is often an issue when investigating different extratropical mechanisms, as they are highly correlated in both space and time. The statistical methods in this study are specifically designed to address this issue. Results show that at 1-year lead-times, the extratropics are related to development of Central Pacific (CP), but not Eastern Pacific (EP) ENSO events. In boreal winter, the SH extratropics contribute to the predictability of CP ENSO, much further in advance than previous studies have indicated. The dominant NH predictor of CP ENSO from one winter to the next is identified as a sea surface temperature dipole in the Western North Pacific. Finally, separation of CP ENSO into its extratropical and tropical related components demonstrates that CP ENSO events with strong forcing from the extratropics start one season earlier than events primarily forced from the Tropics and thus have the potential for longer lead predictability, up to 1-year in advance of a CP ENSO event.








Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) International symposium on information theory, pp 267–281
Alexander MA, Matrosova L, Penland C, Scott JD, Chang P (2008) Forecasting pacific SSTs: linear inverse model predictions of the PDO. J Clim 21(2):385–402
Alexander MA, Vimont DJ, Chang P, Scott JD (2010) The impact of extratropical atmospheric variability on ENSO: testing the seasonal footprinting mechanism using coupled model experiments. J Clim 23(11):2885–2901
Anderson BT (2007) On the joint role of subtropical atmospheric variability and equatorial subsurface heat content anomalies in initiating the onset of ENSO events. J Clim 20:1593–1598
Anderson BT, Furtado JC, Cobb KM, Di Lorenzo E (2013a) Extratropical forcing of El Niño–Southern Oscillation asymmetry. Geophys Res Lett 40(18):4916–4921
Anderson BT, Perez RC, Karspeck A (2013b) Triggering of El Niño onset through trade wind-induced charging of the equatorial Pacific. Geophys Res Lett 40(6):1212–1216
Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112(C11):C11,007
Barnston AG, Tippett MK, Ranganathan M et al (2019) Deterministic skill of ENSO predictions from the North American Multimodel Ensemble. Clim Dyn 53:7215–7234. https://doi.org/10.1007/s00382-017-3603-3
Barnston AG, Tippett MK, L’Heureux ML, Li S, DeWitt DG (2012) Skill of real-time seasonal ENSO model predictions during 2002-11: is our capability increasing? Bull Am Meteorol Soc 93(5):631–651
Bond NA (2003) Recent shifts in the state of the North Pacific. Geophys Res Lett 30(23):2183
Capotondi A, Wittenberg AT, Newman M, Di Lorenzo E, Yu JY, Braconnot P, Cole J, Dewitte B, Giese B, Guilyardi E, Jin FF, Karnauskas K, Kirtman B, Lee T, Schneider N, Xue Y, Yeh SW (2015) Understanding ENSO diversity. Bull Am Meteorol Soc 96(6):921–938
Carton JA, Giese BS (2008) SODA: a reanalysis of ocean climate. Mon Weather Rev 136:2999–3017. https://doi.org/10.1175/2007MWR1978.1
Chang P, Zhang L, Saravanan R, Vimont DJ, Chiang JCH, Ji L, Seidel H, Tippett MK (2007) Pacific Meridional Mode and El Niño–Southern Oscillation. Geophys Res Lett 34(16):L16,608
Chiang JCH, Vimont DJ (2004) Analogous pacific and atlantic meridional modes of tropical atmosphere–ocean variability. J Clim 17(21):4143–4158
Deser C, Phillips AS, Tomas RA, Okumura YM, Alexander MA, Capotondi A, Scott JD, Kwon YO, Ohba M (2012) ENSO and pacific decadal variability in the community climate system model version 4. J Clim 25(8):2622–2651
Di Lorenzo E, Liguori G, Schneider N, Furtado JC, Anderson BT, Alexander MA (2015) ENSO and meridional modes: a null hypothesis for Pacific climate variability. Geophys Res Lett 42(21):9440–9448. https://doi.org/10.1002/2015GL066281
Ding R, Li J, Tseng Y (2015a) The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Clim Dyn 44:2017–2034. https://doi.org/10.1007/s00382-014-2303-5
Ding R, Li J, Tseng Y-h, Sun C, Guo Y (2015b) The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. J Geophys Res Atmos 120:27–45. https://doi.org/10.1002/2014JD022221
Ding R, Li J, Tseng Y, Sun C, Xie F (2017) Joint impact of North and South Pacific extratropical atmospheric variability on the onset of ENSO events. J Geophys Res 122(1):279–298. https://doi.org/10.1002/2016JD025502
Ham YG, Kug JS, Park JY, Jin FF (2013) Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat Geosci 6(1):1–5
Hartten LM (2007) Synoptic settings of westerly wind bursts. J Gephys Res 30:16
Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer series in statistics. Springer, New York
Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54(7):811–829. https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2
Jin EK, Kinter JL III (2009) Characteristics of tropical Pacific SST predictability in coupled GCM forecasts using the NCEP CFS. Clim Dyn 32:675–691
Kalnay E, Kanamitsu M, Kistler R (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–472
Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22(3):615–632
Kirtman BP, Min D, Infanti JM, Kinter JL III, Paolino DA, Zhang Q, Van Den Dool H, Saha S, Mendez MP, Becker E, Peng P, Tripp P, Huang J, DeWitt DG, Tippett MK, Barnston AG, Li S, Rosati A, Schubert SD, Rienecker M, Suarez M, Li ZE, Marshak J, Lim YK, Tribbia J, Pegion K, Merryfield WJ, Denis B, Wood EF (2014) The North American multimodel ensemble: phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull Am Meteorol Soc 95(4):585–601
Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22(6):1499–1515
Kug JS, Choi J, An SI, Jin FF, Wittenberg AT (2010) Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. J Clim 23(5):1226–1239
Larkin NK (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32(16):L16,705
Larson S, Kirtman B (2013) The Pacific Meridional Mode as a trigger for ENSO in a high-resolution coupled model. Geophys Res Lett 40(12):3189–3194
Larson SM, Kirtman BP (2014) The Pacific Meridional Mode as an ENSO precursor and predictor in the North American multimodel ensemble. J Clim 27(18):7018–7032
Larson SM, Pegion KV, Kirtman BP (2018) The south Pacific Meridional Mode as a thermally driven source of ENSO amplitude modulation and uncertainty. J Clim 31(13):5127–5145
Linkin ME, Nigam S (2008) The north Pacific Oscillation–west Pacific teleconnection pattern: mature-phase structure and winter impacts. J Clim 21:1979–1997. https://doi.org/10.1175/2007JCLI2048.1
McPhaden MJ (2003) Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys Res Lett 30:1480. https://doi.org/10.1029/2003GL016872
McPhaden MJ (1999) Genesis and evolution of the 1997–98 El Niño. Science 283(5404):950–954
McPhaden MJ, Yu X (1999) Equatorial waves and the 1997–98 El Niño. Geophys Res Lett 26(19):2961–2964
Min Q, Su J, Zhang R, Rong X (2015) What hindered the El Niño pattern in 2014? Geophys Res Lett 42:6762–6770
Min Q, Su J, Zhang R (2017) Impact of the south and north Pacific Meridional Modes on the El Niño–Southern Oscillation: observational analysis and comparison. J Clim 30:1705–1720. https://doi.org/10.1175/JCLI-D-16-0063.1
National Research Council (2010) Assessment of intraseasonal to interannual climate prediction and predictability. National Academies Press, Washington, DC
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830
Pegion K, Alexander M (2013) The seasonal footprinting mechanism in CFSv2: simulation and impact on ENSO prediction. Clim Dyn 41:1671–1683
Pegion KV, Selman C (2017) Patterns of climate extremes trends and mechanisms, extratropical precursors of the El Niño Southern Oscillation. AGU/Wiley-Blackwell, New York
Penland C, Sardeshmukh PD (1995) The optimal growth of tropical sea surface temperature anomalies. J Clim 8:1999–2024
Philander SG, Fedorov A (2003) Is El Niño sporadic or cyclic? Ann Rev Earth Planet Sci 31:579–594
Qin J, Ding R, Wu Z et al (2017) Relationships between the extratropical ENSO precursor and leading modes of atmospheric variability in the Southern Hemisphere. Adv Atmos Sci 34:360–370. https://doi.org/10.1007/s00376-016-6016-z
Rogers JC (1981) The north Pacific Oscillation. J Climatol 1(1):39–57. https://doi.org/10.1002/joc.3370010106
Seiki A, Takayabu YN (2007) Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: statistics. Mon Weather Rev 135:3325–3345
Smith TM, Reynolds RW, Peterson TC, Lawrimore J, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296
Su J, Xiang B, Wang B, Li T (2014) Abrupt termination of the 2012 Pacific warming and its implication on ENSO prediction. Geophys Res Lett 41:9058–9064
Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45(21):3283–3287
Takahashi K, Montecinos A (2011) ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys Res Lett 38(L10):704
Thompson CJ, Battisti DS (2000) A linear stochastic dynamical model of ENSO. Part I: model development. J Clim 13(15):2818–2832
Thompson CJ, Battisti DS (2001) A linear stochastic dynamical model of ENSO. Part II: analysis. J Clim 14(4):445–466
Torrence C, Webster PJ (1998) The annual cycle of persistence in the El Nño/Southern Oscillation. Q J R Meteorol Soc 124:1985–2004
Trenberth KE, Stepaniak DP (2001) Indices of el Niño evolution. J Clim 14(8):1697–1701
Vimont DJ (2010) Transient growth of thermodynamically coupled variations in the tropics under an equatorially symmetric mean state. J Clim 23:5771–5789. https://doi.org/10.1175/2010JCLI3532.1
Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28(20):3923
Vimont DJ, Wallace JM, Battisti DS (2003) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Clim 16(16):2668–2675
Vimont DJ, Alexander M, Fontaine A (2009) Midlatitude excitation of tropical variability in the Pacific: the role of thermodynamic coupling and seasonality. J Clim 22:518–534
Vimont DJ, Alexander MA, Newman M (2014) Optimal growth of central and east Pacific ENSO events. Geophys Res Lett 41(11):4027–4034
Wang S-Y, L'Heureux M, Chia H-H (2012) ENSO prediction one year in advance using western North Pacific sea surface temperatures. Geophys Res Lett 39:L05702. https://doi.org/10.1029/2012GL050909
Wang S-Y, L’Heureux M, Yoon J-H (2013) Are greenhouse gases changing ENSO precursors in the Western North Pacific? J Clim 26:6309–6322. https://doi.org/10.1175/JCLI-D-12-00360.1
Wu S, Wu L, Liu Q, Xie S-P (2009) Development processes of the Tropical Pacific meridional mode. Adv Atmos Sci 27(1):95–99. https://doi.org/10.1007/s00376-009-8067-x
Wyrtki K (1975) El Niño-the dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J Phys Oceanogr 5:572–584
Xie SP, Philander SGH (1994) A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A 46(4):340–350. https://doi.org/10.1034/j.1600-0870.1994.t01-1-00001.x. http://tellusa.net/index.php/tellusa/article/view/15484
Xue Y, Chen M, Kumar A, Hu ZZ, Wang W (2013) Prediction skill and bias of tropical Pacific sea surface temperatures in the NCEP Climate Forecast System version 2. J Clim 26:5358–5378
You Y, Furtado JC (2017) The role of South Pacific atmospheric variability in the development of different types of ENSO. Geophys Res Lett 44(14):7438–7446
You Y, Furtado JC (2018) The South Pacific Meridional Mode and its role in tropical Pacific climate variability. J Clim 31:10,141–10,163
Yu JY, Kim ST (2011) Relationships between extratropical sea level pressure variations and the central Pacific and Eastern Pacific types of ENSO. J Clim 24(3):708–720
Yu JY, Paek H (2015) Precursors of ENSO beyond the tropical Pacific. US CLIVAR Var 13(Winter):15–20
Yu L, Rienecker MM (1998) Evidence of an extratropical atmospheric influence during the onset of the 1997–98 El Niño. Geophys Res Lett 25(18):3537–3540
Yu JY, Kao HY, Lee T (2010) Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J Clim 23:2869–2884
Yu J-Y, Zou Y, Kim ST, Lee T (2012) The changing impact of El Niño on US winter temperatures. Geophys Res Lett. 39:L15702. https://doi.org/10.1029/2012GL052483
Zhang L, Chang P, Ji L (2009) Linking the Pacific meridional mode to ENSO: coupled model analysis. J Clim 22:3488–3505. https://doi.org/10.1175/2008JCLI2473.1
Zhang H, Clement A, Di Nezio P (2014a) The South Pacific Meridional Mode: a mechanism for ENSO-like variability. J Clim 27(2):769–783
Zhang H, Deser C, Clement A, Tomas R (2014b) Equatorial signatures of the Pacific Meridional Modes: dependence on mean climate state. Geophys Res Lett 41(2):568–574. https://doi.org/10.1002/2013GL058842
Acknowledgements
KP thanks T. DelSole for helpful discussions regarding model selection methodologies. NCEP/NCAR Reanalysis and ERSST data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at https://www.esrl.noaa.gov/psd/. SODA data was obtained from the International Research Institute for Climate and Society Data Library (https://iridl.ldeo.columbia.edu/).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Pegion, K., Selman, C.M., Larson, S. et al. The impact of the extratropics on ENSO diversity and predictability. Clim Dyn 54, 4469–4484 (2020). https://doi.org/10.1007/s00382-020-05232-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00382-020-05232-3


