Abstract
The variability of methane emissions from wetlands in the tropics and northern temperate regions can explain more than 70% of the interannual variation in global wetland methane emissions, which are largely driven by climate variability. We use climate reanalysis, remote sensing wetland area dataset and simulations from 11 land models contributing to Global Methane Budget to investigate the interannual variation and anomalies of wetland methane emissions in the Asian Monsoon region. Methane emissions in this region steadily increased over 2000–2012. However, abnormally low methane emissions were found in equatorial fully humid (Af), warm temperate winter dry (Cw), and warm temperate fully humid (Cf) Asian Monsoon climate sub-regions in 2008, 2009 and 2011, respectively. These spatially-shifting low emissions occurred simultaneously with observed wetland area shrinkage due to abnormally low precipitation. Interannual variability of wetland methane emissions in Asian Monsoon region are primarily driven by South Asian Monsoon system. However, the abnormally low emissions are related to strong La Niña events, and its accompanying effect of weakened East Asian Monsoon system and eastward Western Pacific subtropical high, which drives the shifting pattern of rainfall, and thus the spatial pattern of methane emission anomalies.
This is a preview of subscription content, access via your institution.






Data availability
The monthly mean 2-m tempereature from ECWMF is available at https://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc/.
The monthly total precipitation taken from GPCC is available at https://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html.
MEI.v2 is available at https://www.esrl.noaa.gov/psd/enso/mei/Seasonal/Monthly mean Monsoon Index is available at https://apdrc.soest.hawaii.edu/projects/monsoon/seasonal-monidx.html.
OLR flux from the fifth generation ECMWF reanalysis is available at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=form.
References
Amani A, Lebel T (1997) Lagrangian kriging for the sahelian rainfall at small time steps. J Hydrol 192:125–157. https://doi.org/10.1016/S0022-1694(96)03104-6
Arkin PA, Ardanuy PE (1989) Estimating climatic-scale precipitation from space: a review. J Clim 2:1229–1238. https://doi.org/10.1175/1520-0442(1989)002%3c1229:ECSPFS%3e2.0.CO;2
Arkin PA, Krishna Rao AVR, Kelkar RR (1989) Large-scale precipitation and outgoing longwave radiation from INSAT-1B during the 1986 southwest monsoon season. J Clim 2:619–628. https://doi.org/10.1175/1520-0442(1989)002<0619:LSPAOL>2.0.CO;2
Berrisford P, Dee D, Poli P, Brugge R, Fielding K, Fuentes M, Kallberg P et al (2011) ERA report series: the ERA-Interim archive, version 2.0. Technical report, ECMWF. https://www.ecmwf.int/en/elibrary/8174-era-interim-archive-version-20
Bloom AA, Palmer PI, Fraser A, Reay DS, Frankenberg C (2010) Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Science 327:322–325. https://doi.org/10.1126/science.1175176
Bousquet P, Ringeval B, Pison I, Dlugokencky EJ, Brunke EG, Carouge C, Chevallier F et al (2011) Source attribution of the changes in atmospheric methane for 2006–2008. Atmos Chem Phys 11:3689–3700. https://doi.org/10.5194/acp-11-3689-2011
Cao M, Marshall S, Gregson K (1996) Global carbon exchange and methane emissions from natural wetlands: application of a process-based model. J Geophys Res Atmos 101:14399–14414. https://doi.org/10.1029/96JD00219
Chakraborty A, Nanjundiah RS, Srinivasan J (2002) Role of Asian and African orography in Indian summer monsoon. Geophys Res Lett 29:50–51. https://doi.org/10.1002/joc.1720
Chang CP, Zhang YS, Li T (2000a) Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I role of subtropic ridges. J Clim 13:4310–4325. https://doi.org/10.1175/1520-0442(2000)013%3c4310:IAIVOT%3e2.0.CO;2
Chang CP, Zhang YS, Li T (2000b) Interannual and interdecadal variations of the East Asian summer monsoon and tropical pacific ssts. Part II: meridional structure of the monsoon. J Clim 13:4326–4340. https://doi.org/10.1175/1520-0442(2000)013%3c4326:IAIVOT%3e2.0.CO;2
Chan JC, Zhou W (2005) PDO, ENSO and the early summer monsoon rainfall over south China. Geophys Res Lett 32:93–114. https://doi.org/10.1029/2004GL022015
Chelliah M, Arkin P (1992) Large-scale interannual variability of monthly outgoing longwave radiation anomalies over the global tropics. J Clim 5:371–389. https://doi.org/10.1175/1520-0442(1992)0052.0.CO;2
Chen TC, Huang WR, Yen MC (2011) Interannual variation of the late spring-early summer monsoon rainfall in the northern part of the South China sea. J Clim 24:4295–4313. https://doi.org/10.1175/2011JCLI3930.1
Chen TC, Yen MC, Murakami M (1988) The water vapor transport associated with the 30–50 day oscillation over the Asian monsoon regions during 1979 summer. Mon Weather Rev 116:1983–2002. https://doi.org/10.1175/1520-0493(1988)116%3c1983:TWVTAW%3e2.0.CO;2
Christensen TR, Prentice IC, Kaplan J, Haxeltine A, Sitch S (1996) Methane flux from northern wetlands and tundra: an ecosystem source modelling approach. Tellus B 48:652–661. https://doi.org/10.1034/j.1600-0889.1996.t01-4-00004.x
Crosbie RS, Pickett T, Mpelasoka FS, Hodgson G, Charles SP, Barron OV (2013) An assessment of the climate change impacts on groundwater recharge at a continental scale using a probabilistic approach with an ensemble of gcms. Clim Change 117:41–53. https://doi.org/10.1007/s10584-012-0558-6
Dlugokencky EJ, Bruhwiler L, White JWC, Emmons LK, Novelli PC, Montzka SA, Masarie KA et al (2009) Observational constraints on recent increases in the atmospheric CH4 burden. Geophys Res Lett. https://doi.org/10.1029/2009GL039780
Evans JL, Jaskiewicz FA (2001) Satellite-based monitoring of intraseasonal variations in tropical pacific and atlantic convection. Geophys Res Lett 28:1511–1514. https://doi.org/10.1029/1999GL011259
Fang HJ, Yu GR, Cao M, Zhou M (2010) Effects of multiple environmental factors on CO2 emission and CH4 uptake from old-growth forest soils. Biogeosciences 7:395–407
Fluet-Chouinard E, Lehner B, Rebelo LM, Papa F, Hamilton SK (2015) Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sen Environ 158:348–361. https://doi.org/10.1016/j.rse.2014.10.015
Gallardo C, Gil V, Hagel E, Tejeda C, Castro M (2013) Assessment of climate change in Europe from an ensemble of regional climate models by the use of Köppen–Trewartha classification. Int J Climatol 33:2157–2166. https://doi.org/10.1002/joc.3580
Gopal B (2013) Future of wetlands in tropical and subtropical Asia, especially in the face of climate change. Aquat Sci 75:39–61. https://doi.org/10.1007/s00027-011-0247-y
Grant RF, Humphreys ER, Lafleur PM (2015) Ecosystem CO2 and CH4 exchange in a mixed tundra and a fen within a hydrologically diverse Arctic landscape: 1. Modeling versus measurements. J Geophy Res Biogeo 120:1366–1387. https://doi.org/10.1002/2014JG002888
Hayashida S, Ono A, Yoshizaki S, Frankenberg C, Takeuchi W, Yan X (2013) Methane concentrations over monsoon asia as observed by sciamachy: signals of methane emission from rice cultivation. Remote Sens Environ 139:246–256. https://doi.org/10.1016/j.rse.2013.08.008
Hayman GD, O'Connor FM, Dalvi M, Clark DB, Gedney N, Huntingford C, Prigent C et al (2014) Comparison of the HadGEM2 climate-chemistry model against in situ and SCIAMACHY atmospheric methane data. Atmos Chem Phys 14:13257–13280. https://doi.org/10.5194/acp-14-13257-2014
Hendon HH (2003) Indonesian rainfall variability: impacts of ENSO and local air–sea interaction. J Clim 16:1775–1790. https://doi.org/10.1175/1520-0442(2003)016%3c1775:IRVIOE%3e2.0.CO;2
Hodson EL, Poulter B, Zimmermann NE, Prigent C, Kaplan JO (2011) The El Niño-southern oscillation and wetland methane interannual variability. Geophys Res Lett 38:L08810. https://doi.org/10.1029/2011GL046861
Ho CR, Yan XH, Zheng Q (1995) Satellite observations of upper-layer variabilities in the western pacific warm pool. B Am Meteorol Soc 76:669–679. https://doi.org/10.1175/1520-0477(1995)076%3c0669:SOOULV%3e2.0.CO;2
Huang R (1994) Interactions between the 30–60 day oscillation, the Walker circulation and the convective activities in the tropical western Pacific and their relations to the interannual oscillation. Adv Atmos Sci 11:367–384. https://doi.org/10.1007/BF02658156
Itoh M, Ohte N, Koba K (2009) Methane flux characteristics in forest soils under an east asian monsoon climate. Soil Biol Biochem 41:388–395. https://doi.org/10.1016/j.soilbio.2008.12.003
Ito A, Inatomi M (2012) Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty. Biogeosciences 9:759–773. https://doi.org/10.5194/bg-9-759-2012
James R, Bonazzola M, Legras B, Surbled K, Fueglistaler S (2008) Water vapor transport and dehydration above convective outflow during Asian monsoon. Geophys Res Lett 35:L20810. https://doi.org/10.1029/2008GL035441
Kaplan JO (2002) Wetlands at the Last Glacial Maximum: Distribution and methane emissions. Geophys Res Lett 29:3-1. https://doi.org/10.1029/2001GL013366
Kinter JL III, Miyakoda K, Yang S (2002) Recent change in the connection from the Asian monsoon to ENSO. J Clim 15:1203–1215. https://doi.org/10.1175/1520-0442(2002)015%3c1203:RCITCF%3e2.0.CO;2
Kleinen T, Brovkin V, Schuldt RJ (2012) A dynamic model of wetland extent and peat accumulation: results for the Holocene. Biogeosciences 9:235–248. https://doi.org/10.5194/bg-9-235-2012
Knutson TR, Weickmann KM, Kutzbach JE (1986) Global-scale intraseasonal oscillations of outgoing longwave radiation and 250 mb zonal wind during Northern Hemisphere summer. Mon Weather Rev 114:605–623. https://doi.org/10.1175/1520-0493(1986)114%3c0605:GSIOOO%3e2.0.CO;2
Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen–Geiger climate classification updated. Meteorol Z 15:259–263. https://doi.org/10.1127/0941-2948/2006/0130
Kripalani RH, Kulkarni A (1996) Rainfall variability over South-East Asia—connections with indian monsoon and enso extremes: new perspectives. Int J Climatol 17:1155–1168. https://doi.org/10.1002/(SICI)1097-0088(199709)17:11%3c1155:AID-JOC188%3e3.0.CO;2-B
Lau K-M (1992) The East Asian summer monsoon rainfall variability and climate teleconnection. J Meteor Soc Jpn 70:211–241. https://doi.org/10.2151/jmsj1965.70.1b_211
Lau KM, Chan PH (1983) Short-term climate variability and atmospheric teleconnections from satellite-observed outgoing longwave radiation. Part I: simultaneous relationships. J Atmos Sci 40:2735–2750. https://doi.org/10.1175/1520-0469(1983)040%3c2735:STCVAA%3e2.0.CO;2
Lau KM, Kim KM (2006) Observational relationships between aerosol and asian monsoon rainfall, and circulation. Geophys Res Lett 33:320–337. https://doi.org/10.1029/2006GL027546
Lau K-M, Li M (1984) The monsoon of East Asia and its global association—a survey. Bull Am Meteor Soc 65:114–125. https://doi.org/10.1175/1520-0477(1984)065%3c0114:TMOEAA%3e2.0.CO;2
Lehner B, Doll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296:1–22. https://doi.org/10.1016/j.jhydrol.2004.03.028
Liang XZ, Wang WC (1998) Associations between china monsoon rainfall and tropospheric jets. Q J R Meteor Soc. https://doi.org/10.1002/qj.49712455204
Matthews E, Fung I (1987) Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochem Cy 1:61–86. https://doi.org/10.1021/j100850a043
Melton JR, Arora VK (2016) Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0. Geosci Model Dev 9:323–361. https://doi.org/10.5194/gmd-9-323-2016
Melton JR, Wania R, Hodson EL, Poulter B, Ringeval B, Spahni R, Bohn T et al (2013) Present state of global wetland extent and wetland methane modelling: Conclusions from a Model Inter-Comparison Project (WETCHIMP). Biogeosciences 10:753–788. https://doi.org/10.5194/bg-10-753-2013
Morrissey ML (1986) A statistical analysis of the relationships among rainfall, outgoing longwave radiation and the moisture budget during January–March 1979. Mon Weather Rev 114:931–942. https://doi.org/10.1175/1520-0493(1986)114%3c0931:ASAOTR%3e2.0.CO;2
Pandey S, Houweling S, Krol M, Aben I, Monteil G, Nechita-Banda N, Dlugokencky EJ et al (2017) Enhanced methane emissions from tropical wetlands during the la 2011 Niña. Sci Rep 7:1–8. https://doi.org/10.1038/srep45759
Parker RJ, Boesch H, McNorton J, Comyn-Platt E, Gloor M, Wilson C, Chipperfield MP et al (2018) Evaluating year-to-year anomalies in tropical wetland methane emissions using satellite CH4 observations. Remote Sens Environ 211:261–275. https://doi.org/10.1016/j.rse.2018.02.011
Petrenko VV, Smith AM, Brook EJ, Lowe D, Riedel K, Brailsford G, Hua Q et al (2009) 14CH4 measurements in Greenland ice: investigating last glacial termination CH4 sources. Science 324:506–508. https://doi.org/10.1126/science.1168909
Pison I, Ringeval B, Bousquet P, Prigent C, Papa F (2013) Stable atmospheric methane in the 2000s: key-role of emissions from natural wetlands. Atmos Chem Phys 13:11609–11623. https://doi.org/10.5194/acp-13-11609-2013
Poulter B, Bousquet P, Canadell JG, Ciais P, Peregon A, Saunois M, Arora VK et al (2017) Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environ Res Lett 12:094013. https://doi.org/10.1088/1748-9326/aa8391
Prigent C, Papa F, Aires F, Rossow WB, Matthews E (2007) Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J Geophys Res Atmos 112:D12107. https://doi.org/10.1029/2006JD007847
Purvaja R, Ramesh R, Frenzel P (2010) Plant-mediated methane emission from an Indian mangrove. Global Change Biol 10:1825–1834. https://doi.org/10.1111/j.1365-2486.2004.00834.x
Rajendran K, Kitoh A, Yukimoto S (2004) South and east asian summer monsoon climate and variation in MRI coupled model (MRI-CGCM2). J Clim 17:763–782. https://doi.org/10.1175/1520-0442(2004)017%3c0763:SAEASM%3e2.0.CO;2
Ren X, Yang XQ, Sun X (2013) Zonal oscillation of western Pacific subtropical high and subseasonal SST variations during Yangtze persistent heavy rainfall events. J Clim 26:8929–8946. https://doi.org/10.1175/JCLI-D-12-00861.1
Rigby M et al (2008) Renewed growth of atmospheric methane. Geophys Res Lett. https://doi.org/10.1029/2008GL036037
Riley WJ, Subin ZM, Lawrence DM, Swenson SC, Torn MS, Meng L, Mahowald NM et al (2011) Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM. Biogeosciences 8:1925–1953. https://doi.org/10.5194/bg-8-1925-2011
Ringeval B, Friedlingstein P, Koven C, Ciais P, de Noblet-Ducoudré N, Decharme B, Cadule P (2011) Climate CH4 feedback from wetlands and its interaction with the climate-CO2 feedback. Biogeosciences 8:2137–2157. https://doi.org/10.5194/bg-8-2137-2011
Ringeval B, Noblet-Ducoudré ND, Ciais P, Bousquet P, Prigent C, Papa F, Rossow WB (2010) An attempt to quantify the impact of changes in wetland extent on methane emissions on the seasonal and interannual time scales. Global Biogeochem Cycle. https://doi.org/10.1029/2008GB003354
Rudolf B, Beck C, Grieser J, Schneider U (2005) Global precipitation analysis products. In: Global Precipitation Climatology Centre (GPCC), DWD. Internet publication, pp 1–8. http://www.juergen-grieser.de/publications/publications_pdf/GPCC-intro-products-2005.pdf
Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P, Canadell JG, Dlugokencky EJ et al (2016) The global methane budget 2000–2012. Earth Syst Sci Data 8:697–751. https://doi.org/10.5194/essd-8-697-2016
Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P, Canadell JG, Dlugokencky JE et al (2017) Variability and quasi-decadal changes in the methane budget over the period 2000–2012. Atmos Chem Phys 17:11135–11161. https://doi.org/10.5194/acp-17-11135-2017
Schroeder R, McDonald KC, Chapman BD, Jensen K, Podest E, Tessler ZD, Bohn TJ et al (2015) Development and Evaluation of a multi-year fractional surface water data set derived from active/passive microwave remote sensing data. Remote Sens 7:16688–16732. https://doi.org/10.3390/rs71215843
Spahni R, Wania R, Neef L, Wheele M, Pison I, Bousquet P, Frankenberg C et al (2011) Constraining global methane emissions and uptake by ecosystems. Biogeosciences 8:1643–1665. https://doi.org/10.5194/bg-8-1643-2011
Spinoni J, Vogt J, Naumann G, Carrao H, Barbosa P (2015) Towards identifying areas at climatological risk of desertification using the köppen–geiger classification and fao aridity index. Int J Climatol 35:2210–2222. https://doi.org/10.1002/joc.4124
Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, et al. (2013). IPCC, 2013: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge New York, pp 1535
Subbaramayya I, Naidu CV (2010) Spatial variations and trends in the indian monsoon rainfall. Int J Climatol 12:597–609. https://doi.org/10.1002/joc.3370120606
Tang L, Hossain F (2012) Investigating the similarity of satellite rainfall error metrics as a function of Köppen climate classification. Atmos Res 104:182–192. https://doi.org/10.1016/j.atmosres.2011.10.006
Tian H, Xu X, Liu M, Ren W, Zhang C, Chen G, Lu C (2010) Spatial and temporal patterns of CH4 and N2O fluxes in terrestrial ecosystems of North America during 1979–2008: application of a global biogeochemistry model. Biogeosciences 7:2673–2694. https://doi.org/10.5194/bg-7-2673-2010
Tian H, Chen G, Lu C, Xu X, Ren W, Zhang B, Banger K et al (2015) Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes. Ecosystem Health Sustain 1:1–20. https://doi.org/10.1890/ehs14-0015.1
Upstill-Goddard RC, Barnes J, Owens NJP (1999) Nitrous oxide and methane during the 1994 sw monsoon in the Arabian sea/northwestern Indian ocean. J Geophys Res 104:30067. https://doi.org/10.1029/1999JC900232
Waliser DE, Graham NE, Gautier C (1993) Comparison of the highly reflective cloud and outgoing longwave radiation datasets for use in estimating tropical deep convection. J Clim 6:331–353. https://doi.org/10.1175/1520-0442(1993)006%3c0331:COTHRC%3e2.0.CO;2
Walter BP, Heimann M, Matthews E (2001) Modeling modern methane emissions from natural wetlands 1. Model description and results. J Geophys Res Atmos 106:34189–34206. https://doi.org/10.1029/2001JD900165
Wang B (1994) Climatic regimes of tropical convection and rainfall. J Clim 7:1109–1118. https://doi.org/10.1175/1520-0442(1994)007%3c1109:CROTCA%3e2.0.CO;2
Wang B, Clemens SC, Liu P (2003) Contrasting the Indian and East Asian monsoons: implications on geologic timescales. Mar Geol 201:5–21. https://doi.org/10.1016/S0025-3227(03)00196-8
Wang B, Kang IS, Lee JY (2004) Ensemble simulations of Asian-Australian monsoon variability by 11 AGCMs. J Clim 17:803–818. https://doi.org/10.1175/1520-0442(2004)017%3c0803:ESOAMV%3e2.0.CO;2
Wang B, Wu RG, Fu XH (2000) Pacific-East Asia teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536. https://doi.org/10.1175/1520-0442(2000)013%3c1517:PEATHD%3e2.0.CO;2
Wang B, Wu R, Lau KM (2001) Interannual variability of the Asian summer monsoon: contrasts between the Indian and the western north pacific–East Asian monsoons*. J Clim 14:4073–4090. https://doi.org/10.1175/1520-0442(2001)014%3c4073:IVOTAS%3e2.0.CO;2
Wang P, Clemens S, Beaufort L, Braconnot P, Ganssen G, Jian Z, Kershaw P et al (2005) Evolution and variability of the asian monsoon system: state of the art and outstanding issues. Q Sci Rev 24:595–629. https://doi.org/10.1016/j.quascirev.2004.10.002
Webster PJ, Magana VO, Palmer TN, Tomas TA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and prospects for prediction. J Geophys Res 103:14451–14510. https://doi.org/10.1029/97JC02719
Webster PJ, Yang S (1992) Monsoon and Enso: selectively interactive systems. Q J R Meteor Soc 118:877–926. https://doi.org/10.1002/qj.49711850705
Wolter K (1987) The southern oscillation in surface circulation and climate over the tropical Atlantic, Eastern Pacific, and Indian Oceans as captured by cluster analysis. J Clim Appl Meteor 26(4):540–558. https://doi.org/10.1175/1520-0450(1987)026%3c0540:TSOISC%3e2.0.CO;2
Woodward FI, Lomas MR (2004) Vegetation dynamics—simulating responses to climatic change. Biol Rev 79:643–670. https://doi.org/10.1017/S1464793103006419
Wu X, Mao J (2016) Interdecadal variability of early summer monsoon rainfall over south china in association with the pacific decadal oscillation: interdecadal variability of scmr in association with pdo. Int J Climatol. https://doi.org/10.1002/joc.4734
Wu ZW, Jiang ZH, Li JP, Zhong SS, Wang LJ (2012a) Possible association of the western Tibetan Plateau snow cover with the decadal to interdecadal variations of northern China heatwave frequency. Clim Dyn 39:2393–2402. https://doi.org/10.1007/s00382-012-1439-4
Wu ZW, Li JP, Jiang ZH, Ma TT (2012b) Modulation of the Tibetan Plateau snow cover on the ENSO teleconnections: from the East Asian summer monsoon perspective. J Clim 25:2481–2489. https://doi.org/10.1175/JCLI-D-11-00135.1
Wu ZW, Li JP, Jiang ZH, He JH, Zhu XY (2012c) Possible effects of the North Atlantic Oscillation on the strengthening relationship between the East Asian summer monsoon and ENSO. Int J Climatol 32:794–800. https://doi.org/10.1002/joc.2309
Xie P, Arkin PA (1998) Global monthly precipitation estimates from satellite-observed outgoing longwave radiation. J Clim 11:137–164. https://doi.org/10.1175/1520-0442(1998)011%3c0137:GMPEFS%3e2.0.CO;2
Xu X, Lu C, Shi X, Ding Y (2010) Large-scale topography of china: a factor for the seasonal progression of the meiyu rainband? J Geophys Res Atmos. https://doi.org/10.1029/2009JD012444
Xu X, Riley WJ, Koven CD, Billesbach DP, Chang RYW, Commane R, Euskirchen ES et al (2016) A multi-scale comparison of modeled and observed seasonal methane emissions in northern wetlands. Biogeosciences 13:5043–5056. https://doi.org/10.5194/bg-13-5043-2016
Yang S, Wu B, Zhang R, Zhou S (2013) Relationship between an abrupt drought-flood transition over mid-low reaches of the yangtze river in 2011 and the intraseasonal oscillation over mid-high latitudes of East Asia. Acta Meteorol Sin 27:129–143. https://doi.org/10.1007/s13351-013-0201-0
Yan XH, Ho CR, Zheng Q, Klemas V (1992) Temperature and size variabilities of the western pacific warm pool. Science 258:1643–1645. https://doi.org/10.1126/science.258.5088.1643
Yasunari T (1991) The monsoon year—a new concept of the climatic year in the Tropics. Bull Am Meteor Soc 72:937–957. https://doi.org/10.1175/1520-0477(1991)072%3c1331:TMYNCO%3e2.0.CO;2
Yoo JM, Carton JA (1988) Spatial dependence of the relationship between rainfall and outgoing longwave radiation in the tropical atlantic. J Clim 1:1047–1056. https://doi.org/10.1175/1520-0442(1988)001%3c1047:SDOTRB%3e2.0.CO;2
Yuan W, Yu R, Chen H, Li J, Zhang M (2010) Subseasonal characteristics of diurnal variation in summer monsoon rainfall over central eastern china. J Clim 23:6684–6695. https://doi.org/10.1175/2010JCLI3805.1
Yulaeva E, Wallace JM (1994) The signature of enso in global temperature and precipitation fields derived from the microwave sounding unit. J Clim 7:1719–1736. https://doi.org/10.1175/1520-0442(1994)007%3c1719:TSOEIG%3e2.0.CO;2
Zeroual A, Assani AA, Meddi M, Alkama R (2019) Assessment of climate change in algeria from 1951 to 2098 using the köppen–geiger climate classification scheme. Clim Dyn. https://doi.org/10.1007/s00382-018-4128-0
Zheng Y, Singarayer JS, Cheng P, Yu X, Liu Z, Valdes PJ, Pancost RD (2014) Holocene variations in peatland methane cycling associated with the asian summer monsoon system. Nat Commun 5:4631. https://doi.org/10.1038/ncomms5631
Zhu Q, Liu J, Peng C, Chen H, Fang X, Jiang H, Yang GX et al (2014) Modelling methane emissions from natural wetlands by development and application of the TRIPLEX-GHG model. Geosci Model Dev 7:981–999. https://doi.org/10.5194/gmd-7-981-2014
Zhu Q, Peng C, Chen H, Fang X, Liu J, Jiang H, Yang Y et al (2015) Estimating global natural wetland methane emissions using process modelling: spatio-temporal patterns and contributions to atmospheric methane fluctuations. Global Ecol Biogeogr 24:959–972. https://doi.org/10.1111/geb.12307
Zhu Q, Peng C, Ciais P, Jiang H, Liu J, Bousquet P, Li S et al (2017) Interannual variation in methane emissions from tropical wetlands triggered by repeated El Nino Southern oscillation. Global Change Biol 23:4706–4716. https://doi.org/10.1111/gcb.13726
Zong H, Bueh C, Chen L, Ji L, Wei J (2012) A typical mode of seasonal circulation transition: a climatic view of the abrupt transition from drought to flood over the middle and lower reaches of the yangtze river valley in the late spring and early summer of 2011. Atmos Ocean Sci Lett 5:349–354. https://doi.org/10.1080/16742834.2012.11447018
Zhang Z, Zimmermann NE, Calle L, Hurtt G, Chatterjee A, Poulter B (2018) Enhanced response of global wetland methane emissions to the 2015–2016 El Niño-Southern oscillation event. Environ Res Lett 13:074009. https://doi.org/10.1088/1748-9326/aac939
Zhang Z, Zimmermann NE, Stenke A, Li X, Hodson EL, Zhu G, Huang C et al (2017) Emerging role of wetland methane emissions in driving 21st century climate change. P Natl Acad Sci USA 114:9647–9652. https://doi.org/10.1073/pnas.1618765114
Zhang Z (2001) Relations of water vapor transport from Indian monsoon with that over East Asia and the summer rainfall in China. Adv Atmos Sci 18:1005–1017. https://doi.org/10.1007/BF03403519
Zürcher S, Spahni R, Joos F, Steinacher M, Fischer H (2013) Impact of an abrupt cooling event on interglacial methane emissions in northern peatlands. Biogeosciences 10:1963–1981. https://doi.org/10.5194/bg-10-1963-2013
Acknowledgements
This study is funded by the National Key R&D Program of China (2018YFA0606002). We acknowledge the data providers, especially for simulations (listed in Table S2) of the wetland methane emissions contributed to Global Methane Budget Project (2000–2012).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Zhang, X., Xu, X., Jia, G. et al. Hiatus of wetland methane emissions associated with recent La Niña episodes in the Asian monsoon region. Clim Dyn 54, 4095–4107 (2020). https://doi.org/10.1007/s00382-020-05219-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00382-020-05219-0