Climate change impact to Mackenzie river Basin projected by a regional climate model

Abstract

A regional climate model, WRF (Weather Research and Forecasting model), was set-up and fine-tuned to simulate the possible impacts of climate change to the Mackenzie River Basin (MRB) of Canada from May to October. The baseline (1979–2005) regional climate of the MRB simulated by WRF agrees well with gridded observed climate data, ANUSPLIN of Environment Canada. Next, WRF projected the regional climate change of MRB for 2041–2100 by dynamic downscaling RCP4.5 and RCP8.5 climate scenarios of three global climate models (GCMs), ACCESS1–3, CCSM4, and CanESM2. Based on RCP4.5 and RCP8.5 climate scenarios downscaled by WRF, air temperature of MRB is projected to increase by 2.5–3.8 °C and 4.5–6.9 °C in the 2050 s and 2080 s, respectively. In general, the air temperature of MRB is projected to increase marginally higher in colder regions of higher latitude and elevation. In contrast, the seasonal precipitation of MRB is only projected to increase marginally in the 2080 s under the RCP4.5 and RCP8.5 scenarios, respectively. The projected extreme precipitation indices show that future precipitation events would become more intensive and of longer durations. Under both RCP4.5 and RCP8.5 climate scenarios, the annual counts of days with total precipitation exceeding 10 mm of MRB (R10mm) are projected to increase by 18% in 2041–2100; the maximum 5-day precipitation (Rx5day) could increase by 9.4%. More studies should be conducted to gain a better understanding of the potential impacts of global warming to MRB and possible adaptive measures to mitigate these impacts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Al Aamery N, Fox JF, Snyder M (2016) Evaluation of climate modeling factors impacting the variance of streamflow. J Hydrol 542:125–142. https://doi.org/10.1016/j.jhydrol.2016.08.054

    Article  Google Scholar 

  2. Arora VK, Scinocca JF, Boer GJ, Christian JR, Denman KL, Flato GM, Kharin VV, Lee WG, Merryfield WJ (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett. https://doi.org/10.1029/2010gl046270

    Article  Google Scholar 

  3. Aziz OIA, Burn DH (2006) Trends and variability in the hydrological regime of the Mackenzie River Basin. J Hydrol 319:282–294. https://doi.org/10.1016/j.jhydrol.2005.06.039

    Article  Google Scholar 

  4. Bawden AJ, Linton HC, Burn DH, Prowse TD (2014) A spatiotemporal analysis of hydrological trends and variability in the Athabasca River region, Canada. J Hydrol 509:333–342. https://doi.org/10.1016/j.jhydrol.2013.11.051

    Article  Google Scholar 

  5. Beltos S (ed) (2008) River ice breakup. Water Resources Publications, Highlands Ranch, p 462

    Google Scholar 

  6. Brabets TP, Walvoord MA (2009) Trends in streamflow in the Yukon River Basin from 1944 to 2005 and the influence of the Pacific Decadal Oscillation. J Hydrol 371:108–119. https://doi.org/10.1016/j.jhydrol.2009.03.018

    Article  Google Scholar 

  7. Burn DH (2008) Climatic influences on streamflow timing in the headwaters of the Mackenzie River Basin. J Hydrol 352:225–238. https://doi.org/10.1016/j.jhydrol.2008.01.019

    Article  Google Scholar 

  8. Cannon AJ (2018) Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables. Clim Dyn 50:31–49. https://doi.org/10.1007/s00382-017-3580-6

    Article  Google Scholar 

  9. Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Kiehl JT, Briegleb B, Bitz C, Lin SJ, Zhang M, Dai Y (2004) Description of the NCAR community atmosphere model (CAM3.0). Boulder: NCAR. NCAR technical note TN-4641STR, 214 pp

  10. CSIRO and Bureau of Meteorology (2015) Climate change in australia technical report, Melbourne, Australia. www.climatechangeinaustralia.gov.au

  11. Dasari HP, Salgado R, Perdigao J, Challa VS (2014) A regional climate simulation study using WRF-ARW model over Europe and evaluation for extreme temperature weather events. Int J Atmos Sci 2014

  12. de Queiroz AR, Lima LMM, Lima JWM, da Silva BC, Scianni LA (2016) Climate change impacts in the energy supply of the Brazilian hydro-dominant power system. Renew Energ 99:379–389. https://doi.org/10.1016/j.renene.2016.07.022

    Article  Google Scholar 

  13. Deng HQ, Luo Y, Yao Y, Liu C (2013) Spring and summer precipitation changes from 1880 to 2011 and the future projections from CMIP5 models in the Yangtze River Basin, China. Quatern Int 304:95–106. https://doi.org/10.1016/j.quaint.2013.03.036

    Article  Google Scholar 

  14. Dibike Y, Prowse T, Shrestha R, Ahmed R (2012) Observed trends and future projections of precipitation and air temperature in the Lake Winnipeg watershed. J Great Lakes Res 38:72–82. https://doi.org/10.1016/j.jglr.2011.04.005

    Article  Google Scholar 

  15. Du Q, Kim AM, Zheng Y (2017) Modeling multimodal freight transportation scenarios in Northern Canada under climate change impacts. Res Transport Bus Manag 23:86–96

    Article  Google Scholar 

  16. Eum HI, Dibike Y, Prowse T (2017) Climate-induced alteration of hydrologic indicators in the Athabasca River Basin, Alberta, Canada. J Hydrol 544:327–342. https://doi.org/10.1016/j.jhydrol.2016.11.034

    Article  Google Scholar 

  17. Fathalli B, Pohl B, Castel T, Safi MJ (2014) Evaluation of a surface temperature simulation over Tunisia using the WRF model. 3rd International Lund Regional-Scale Climate Modelling Workshop, 21st Century Challenges in Regional Climate Modelling, At Lund, Sweden

  18. Fu X, Kuo CC, Gan TY (2015) Change point analysis of precipitation indices of Western Canada. Int J Climatol 35:2592–2607. https://doi.org/10.1002/joc.4144

    Article  Google Scholar 

  19. Gaudard L, Romerio F, Dalla Valle F, Gorret R, Maran S, Ravazzani G, Stoffel M, Volonterio M (2014) Climate change impacts on hydropower in the Swiss and Italian Alps. Sci Total Environ 493:1211–1221. https://doi.org/10.1016/j.scitotenv.2013.10.012

    Article  Google Scholar 

  20. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. World Meteorological Organization (WMO) Bulletin, 58(3):175

  21. Government of Canada (2019) Retrieved November 7, 2019 from https://www.canada.ca/en/environment-climate-change/services/climate-change/canadian-centre-climate-services/basics/trends-projections/changes-temperature.html

  22. Gutmann E, Pruitt T, Clark MP, Brekke L, Arnold JR, Raff DA, Rasmussen RM (2014) An intercomparison of statistical downscaling methods used for water resource assessments in the United States. Water Resour Res 50:7167–7186. https://doi.org/10.1002/2014wr015559

    Article  Google Scholar 

  23. Herrera-Pantoja M, Hiscock KM (2015) Projected impacts of climate change on water availability indicators in a semi-arid region of central Mexico. Environ Sci Policy 54:81–89. https://doi.org/10.1016/j.envsci.2015.06.020

    Article  Google Scholar 

  24. Hollander M, Wolfe DA (1973) Nonparametric statistical methods. John Wiley & Sons, New York, pp 68–75

    Google Scholar 

  25. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341. https://doi.org/10.1175/Mwr3199.1

    Article  Google Scholar 

  26. Houghton J (2007) Global warming, climate change and sustainability. John Ray Initiative Briefing Paper 14:2007

    Google Scholar 

  27. Hutchinson MF, Mckenney DW, Lawrence K, Pedlar JH, Hopkinson RF, Milewska E, Papadopol P (2009) Development and testing of canada-wide interpolated spatial models of daily minimum-maximum temperature and precipitation for 1961–2003. J Appl Meteorol Clim 48:725–741. https://doi.org/10.1175/2008jamc1979.1

    Article  Google Scholar 

  28. IPCC (2007) Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  29. IPCC (Intergovernmental Panel on Climate Change). (2013). Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Rep. of the Intergovernmental Panel on Climate Change, T. F. Stocker, et al. eds., Cambridge University Press, Cambridge, U.K., 1535

  30. Ishida K, Gorguner M, Ercan A, Trinh T, Kavvas ML (2017) Trend analysis of watershed-scale precipitation over Northern California by means of dynamically-downscaled CMIP5 future climate projections. Sci Total Environ 592:12–24

    Article  Google Scholar 

  31. Jha M, Pan ZT, Takle ES, Gu R (2004) Impacts of climate change on streamflow in the Upper Mississippi River Basin: a regional climate model perspective. J Geophys Res-Atmos. https://doi.org/10.1029/2003jd003686

    Article  Google Scholar 

  32. Jiang R, Gan TY, Xie J, Ni W, Kuo CC (2015) Historical and potential changes of precipitation and temperature of alberta subjected to climate change impact: 1900–2100. J Theor Appl Climatol. https://doi.org/10.1007/s00704-015-1664-y

    Article  Google Scholar 

  33. Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181. https://doi.org/10.1175/1520-0450(2004)043%3c0170:Tkcpau%3e2.0.Co;2

    Article  Google Scholar 

  34. Karl TR, Nicholls N, Ghazi A (1999) CLIVAR/GCOS/WMO workshop on indices and indicators for climate extremes: workshop summary. Clim Change 42:3–7

    Article  Google Scholar 

  35. Kukal M, Irmak S (2016) Long-term patterns of air temperatures, daily temperature range, precipitation, grass-reference evapotranspiration and aridity index in the USA great plains: part II. Temporal trends. J Hydrol 542:978–1001. https://doi.org/10.1016/j.jhydrol.2016.06.008

    Article  Google Scholar 

  36. Kuo CC, Gan TY (2018) Estimation of precipitation and air temperature over western Canada using a regional climate model. Int J Climatol 38:5125–5135. https://doi.org/10.1002/joc.5716

    Article  Google Scholar 

  37. Kuo CC, Gan TY, Higuchi K (2017) Evaluation of future streamflow patterns in lake simcoe subbasins based on ensembles of statistical downscaling. J Hydrol Eng. https://doi.org/10.1061/(Asce)He.1943-5584.0001548

    Article  Google Scholar 

  38. Kurkute S, Li Z, Li Y, Huo F (2019) Assessment and projection of water budget over western canada using convection permitting WRF simulations. Hydrol Earth Syst Sci. https://doi.org/10.5194/hess-2019-522

    Article  Google Scholar 

  39. Lenderink G, Buishand A, van Deursen W (2007) Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. Hydrol Earth Syst Sc 11:1143–1159

    Article  Google Scholar 

  40. Lesack LFW, Marsh P, Hicks FE, Forbes DL (2014) Local spring warming drives earlier river-ice breakup in a large Arctic delta. Geophys Res Lett 41:1560–1566. https://doi.org/10.1002/2013gl058761

    Article  Google Scholar 

  41. Lim KSS, Hong SY (2010) Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon Weather Rev 138:1587–1612. https://doi.org/10.1175/2009mwr2968.1

    Article  Google Scholar 

  42. McKenney DW, Papadopol P, Campbell KL, Lawrence KM, Hutchinson MF (2006) Spatial models of Canada- and North America-wide 1971/2000 minimum and maximum temperature, total precipitation and derived bioclimatic variables. Marie: Canadian Forestry Service. Tech. note #: 106

  43. Mehrotra R, Sharma A (2010) Development and application of a multisite rainfall stochastic downscaling framework for climate change impact assessment. Water Resour Res. https://doi.org/10.1029/2009wr008423

    Article  Google Scholar 

  44. Mekis E, Vincent LA (2011) An overview of the 2nd generation adjusted daily precipitation dataset for trend analysis in Canada. Atmos Ocean 49:163–177. https://doi.org/10.1080/07055900.2011.583910

    Article  Google Scholar 

  45. Ozturk T, Turp MT, Turkes M, Kurnaz ML (2017) Projected changes in temperature and precipitation climatology of Central Asia CORDEX Region 8 by using RegCM4.3.5. Atmos Res 183:296–307. https://doi.org/10.1016/j.atmosres.2016.09.008

    Article  Google Scholar 

  46. Pacific Climate Impacts Consortium. (2014). “Statistically downscaled climate scenarios.” 〈http://tools.pacificclimate.org/dataportal/downscaled_gcms/map/〉 (Jan 8, 2015)

  47. Pattnayak KC, Kar SC, Dalal M, Pattnayak RK (2017) Projections of annual rainfall and surface temperature from CMIP5 models over the BIMSTEC countries. Global Planet Change 152:152–166. https://doi.org/10.1016/j.gloplacha.2017.03.005

    Article  Google Scholar 

  48. Pendergrass AG, Hartmann DL (2014) Changes in the distribution of rain frequency and intensity in response to global warming. J Clim 27:8372–8383. https://doi.org/10.1175/Jcli-D-14-00183.1

    Article  Google Scholar 

  49. Perkins SE, Pitman AJ, Holbrook NJ, McAneney J (2007) Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J Clim 20:4356–4376. https://doi.org/10.1175/Jcli4253.1

    Article  Google Scholar 

  50. Peterson TC et al (2001) Report on the activities of the working group on climate change detection and related rapporteurs 1998–2001. WMO, Rep. WCDMP-47, WMO-TD 1071, Geneve, Switzerland

  51. Riahi K, Rao S, Krey V, Cho CH, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Clim Change 109:33–57. https://doi.org/10.1007/s10584-011-0149-y

    Article  Google Scholar 

  52. Scheepers H, Wang J, Gan TY, Kuo CC (2018) The impact of climate change on inland waterway transport: effects of low water levels on the Mackenzie River. J Hydrol 566:285–298. https://doi.org/10.1016/j.jhydrol.2018.08.059

    Article  Google Scholar 

  53. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389

    Article  Google Scholar 

  54. Shashikanth K, Madhusoodhanan CG, Ghosh S, Eldho TI, Rajendran K, Murtugudde R (2014) Comparing statistically downscaled simulations of Indian monsoon at different spatial resolutions. J Hydrol 519:3163–3177. https://doi.org/10.1016/j.jhydrol.2014.10.042

    Article  Google Scholar 

  55. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda M, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR tech. note, NCAR/TN\u2013475?STR, 123 pp

  56. Stewart RE, Leighton HG, Marsh P, Moore GWK, Ritchie H, Rouse WR, Soulis ED, Strong GS, Crawford RW, Kochtubajda B (1998) The Mackenzie GEWEX Study: the water and energy cycles of a major North American river basin. Bull Am Meteorol Soc 79(12):2665–2684

    Article  Google Scholar 

  57. Tan X, Gan TY (2015) Contribution of human and climate change impacts to changes in streamflow of Canada. Sci Rep 5:17767. https://doi.org/10.1038/srep17767

    Article  Google Scholar 

  58. Tan ML, Ibrahim A, Yusop Z, Chua VP, Chan NW (2017) Climate change impacts under CMIP5 RCP scenarios on water resources of the Kelantan River Basin, Malaysia. Atmos Res 189:1–10. https://doi.org/10.1016/j.atmosres.2017.01.008

    Article  Google Scholar 

  59. Trang NTT, Shrestha S, Shrestha M, Datta A, Kawasaki A (2017) Evaluating the impacts of climate and land-use change on the hydrology and nutrient yield in a transboundary river basin: a case study in the 3S River Basin (Sekong, Sesan, and Srepok). Sci Total Environ 576:586–598. https://doi.org/10.1016/j.scitotenv.2016.10.138

    Article  Google Scholar 

  60. Vincent LA, Wang XLL, Milewska EJ, Wan H, Yang F, Swail V (2012) A second generation of homogenized Canadian monthly surface air temperature for climate trend analysis. J Geophys Res-Atmos. https://doi.org/10.1029/2012jd017859

    Article  Google Scholar 

  61. Watson DF (1992) Contouring: a guide to the analysis and display of spatial data. Pergamon Press, Oxford, England

    Google Scholar 

  62. Watson DF, Philip GM (1984) Triangle based interpolation. Math Geol 16(8):779–795. https://doi.org/10.1007/BF01036704

    Article  Google Scholar 

  63. Whitehead PG, Crossman J, Balana BB, Futter MN, Comber S, Jin L, Skuras D, Wade AJ, Bowes MJ, Read DS (2013) A cost-effectiveness analysis of water security and water quality: impacts of climate and land-use change on the River Thames system. Philos T R Soc A. https://doi.org/10.1098/rsta.2012.0413

    Article  Google Scholar 

  64. Wilson CO, Weng QH (2011) Simulating the impacts of future land use and climate changes on surface water quality in the Des Plaines River watershed, Chicago Metropolitan Statistical Area, Illinois. Sci Total Environ 409:4387–4405. https://doi.org/10.1016/j.scitotenv.2011.07.001

    Article  Google Scholar 

  65. Woo MK, Thorne R (2003) Streamflow in the Mackenzie basin, Canada. Arctic 328–340

  66. Woo MK, Thorne R, Giguère N (2014) Winter flows in the Mackenzie drainage system. Arctic 67(2):238–256

    Article  Google Scholar 

  67. Xia XH, Wu Q, Mou XL, Lai YJ (2015) Potential impacts of climate change on the water quality of different water bodies. J Environ Inform 25:85–98. https://doi.org/10.3808/jei.201400263

    Article  Google Scholar 

  68. Yang DQ, Shi XG, Marsh P (2015) Variability and extreme of Mackenzie River daily discharge during 1973–2011. Quatern Int 380:159–168. https://doi.org/10.1016/j.quaint.2014.09.023

    Article  Google Scholar 

  69. Zhang X, Flato G, Kirchmeier-Young M, Vincent L, Wa H, Wang C, Rong R, Fyfe J, Li G, Kharin VV (2019) Changes in temperatures and precipitation across Canada: chapter 4. In: Bush E, Lemmen DS (eds) Canada’s changing climate report. Government of Canada, Ottawa, pp 112–193

    Google Scholar 

  70. Zheng YZ, Kim AM (2017) Rethinking business-as-usual: Mackenzie River freight transport in the context of climate change impacts in northern Canada. Transport Res D-Tr E 53:276–289. https://doi.org/10.1016/j.trd.2017.04.023

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Transport Canada under the Northern Transport Adaptation Initiative (NTAI) program. The ANUSPLIN, NARR data, GCM climate scenarios data of CMIP5 and ERA-Interim reanalysis data, etc., were downloaded from the websites of Environment Canada NCEP, ESGF and ECMWF, respectively. Supercomputing resources of this study was provided by Compute Canada’s WestGrid supercomputing program. The regional climate model, WRF (Weather Research and Forecasting), was downloaded from the website of wrf-model.org. The study was funded by Natural Sciences and Engineering Research Council of Canada under NSERC.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thian Yew Gan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuo, CC., Gan, T.Y. & Wang, J. Climate change impact to Mackenzie river Basin projected by a regional climate model. Clim Dyn 54, 3561–3581 (2020). https://doi.org/10.1007/s00382-020-05177-7

Download citation

Keywords

  • Mackenzie River Basin
  • Climate change impact
  • Precipitation
  • Temperature
  • Regional climate model WRF
  • RCP 4.5
  • 8.5 climate scenarios