Skip to main content

Advertisement

Log in

Seasonal changes of the South American monsoon system during the Mid-Holocene in the CMIP5 simulations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The South American Monsoon System (SAMS) is a major climatic feature of South America, and its domain extends from Amazon to La Plata basin. The SAMS region is vulnerable to variations of climate and precipitation patterns, which could impact economic activities and lead to potential societal consequences. In the face of a warming future scenario, the importance of the study of the past climate with numerical simulations is to evaluate the climate models and to assure the reliability of future projections. Here we investigate the Mid-Holocene SAMS, evaluating changes in strength, life cycle and associated dynamical mechanisms in ten Earth System Models simulations. Our results show that the SAMS was weaker in the Mid-Holocene than in the pre-industrial climate in December–January–February (DJF), but stronger in September–October–November (SON). This is probably a consequence of insolation variations in the Mid-Holocene, which contributed to changes in the moisture flux from the Atlantic Ocean to the continent, the strength of the upper-level atmospheric circulation, and the amount of precipitation over the SAMS region. Moreover, we suggest that the life cycle of the SAMS was altered during the Mid-Holocene, with an earlier onset and demise. Our results also indicate that Mid-Holocene SAMS changes are connected to precipitation variations near Northeast Brazil, in a dipole configuration of precipitation between western Amazon and Northeast Brazil, due to the influence of the Walker cell. Finally, this study highlights a need for improvement of the numerical models to better simulate the amount of precipitation over South America and the upper-level circulation over western Amazon in SON, which are crucial factors for a more realistic representation of the SAMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adam O, Schneider T, Brient F (2018) Regional and seasonal variations of the double-ITCZ bias in CMIP5 models. Clim Dyn 51(1–2):101–117

    Google Scholar 

  • An SI, Choi J (2014) Mid-Holocene tropical Pacific climate state, annual cycle, and ENSO in PMIP2 and PMIP3. Clim Dyn 43:957–970

    Google Scholar 

  • Baker PA, Fritz SC (2015) Nature and causes of quaternary climate variation of tropical South America. Quat Sci Rev 124:31–47

    Google Scholar 

  • Baker PA, Rigsby CA, Seltzer GO, Fritz SC, Lowenstein TK, Bacher NP, Veliz C (2001a) Tropical climate changes at millennial and orbital timescales in the Bolivian Altiplano. Nature 409:698–701

    Google Scholar 

  • Baker PA, Seltzer GO, Fritz SC, Dunbar RB, Grove MJ, Tapia PM, Cross SL, Rowe HD, Broda JP (2001b) The history of South American tropical precipitation for the past 25,000 years. Science 291:640–643

    Google Scholar 

  • Barichivich J, Gloor E, Peylin P, Brienen RJ, Schöngart J, Espinoza JC, Pattnayak KC (2018) Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Science advances 4(9):8785

    Google Scholar 

  • Berger A (1978) Long-term variations of caloric solar radiation resulting from the earth’s orbital elements. Quatern Res 9:139–167

    Google Scholar 

  • Biasutti M, Battisti DS, Sarachik ES (2003) The annual cycle over the tropical Atlantic, South America, and Africa. J Clim 16:2491–2508

    Google Scholar 

  • Bird BW, Abbott MB, Rodbell DT, Vuille M (2011) Holocene tropical South American hydroclimate revealed from a decadally resolved lake sediment δ18O record. Earth Planet Sci Lett 310(3–4):192–202

    Google Scholar 

  • Bothe O, Jungclaus JH, Zanchettin D (2013) Consistency of the multi-model CMIP5/PMIP3-past1000 ensemble. Clim Past 9:2471–2487

    Google Scholar 

  • Boulanger JP, Martinez F, Segura EC (2006) Projection of future climate change conditions using IPCC simulations, neural networks, and Bayesian statistics. Part 2: precipitation mean state and seasonal cycle in South America. Clim Dyn 28:255–271

    Google Scholar 

  • Braconnot P, Kageyama M (2015) Shortwave forcing and feedbacks in last glacial maximum and Mid-Holocene PMIP3 simulations. Philos Trans R Soc A 373(2054):20140424

    Google Scholar 

  • Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt J-Y, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet Th, Hewitt CD, Kageyama M, Kitoh A, Laine A, Loutre M-F, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007a) Results of PMIP2 coupled simulations of the Mid-Holocene and last glacial maximum—part 1: experiments and large-scale features. Clim Past 3:261–277

    Google Scholar 

  • Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt J-Y, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet Th, Hewitt CD, Kageyama M, Kitoh A, Loutre M-F, Marti O, Merkel U, Ramstein G, Valdes P, Weber L, Yu Y, Zhao Y (2007b) Results of PMIP2 coupled simulations of the Mid-Holocene and last glacial maximum—Part 2: feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Clim Past 3:279–296

    Google Scholar 

  • Braconnot P et al (2011) The paleoclimate modeling intercomparison project contribution to CMIP5. CLIVAR Exchanges 56(16):15–19

    Google Scholar 

  • Braconnot P, Harrison SP, Kageyama M et al (2012) Evaluation of climate models using palaeoclimatic data. Nat Clim Change 2:417–424

    Google Scholar 

  • Brady EC, Otto-Bliesner BL, Kay JE, Rosenbloom N (2013) Sensitivity to glacial forcing in the CCSM4. J Clim 26:1901–1925

    Google Scholar 

  • Carré M, Azzoug M, Bentaleb I, Chase BM, Fontugne M, Jackson D, Ledru M-P, Maldonado A, Sachs JP, Schauer AJ (2012) Mid-Holocene mean climate in the Southeastern Pacific and its influence on South America. Quatern Int 253:55–66

    Google Scholar 

  • Carvalho LMV, Jones C, Liebmann B (2002) Extreme precipitation events in Southeastern South America and large-scale convective patterns in the South Atlantic convergence zone. J Clim 15:2377–2394

    Google Scholar 

  • Cavalcanti I, Shimizu MH (2012) Climate fields over South America and variability of SACZ and PSA in HadGEM2-ES. American Journal of Climate Change 1:132–144

    Google Scholar 

  • Chan SC, Behera SK, Yamagata T (2008) Indian Ocean dipole influence on South American rainfall. Geophys Res Lett 35(14):L14S12. https://doi.org/10.1029/2008GL034204

    Article  Google Scholar 

  • Chen TC, Weng SP, Schubert S (1999) Maintenance of austral summertime upper tropospheric circulation over tropical South America: the Bolivian high-nordeste low system. J Climate 18:320–330

    Google Scholar 

  • Cheng H, Sinha A, Cruz FW, Wang X, Edwards RL, d'Horta FM, Ribas CC, Vuille M, Stott LD, Auler AS (2013) Climate change patterns in Amazonia and biodiversity. Nat Commun 4:1411

    Google Scholar 

  • Cobb KM, Westphal N, Sayani HR, Watson JT, Di Lorenzo E, Cheng H, Edwards RL, Charles CD (2013) Highly variable El Niño—Southern oscillation throughout the Holocene. Science 339:67–70

    Google Scholar 

  • Coelho CAS, Cavalcanti IFA, Costa SMS, Freitas SR, Ito ER, Luz G, Santos AF, Nobre CA, Marengo JA, Pezza AB (2012) Climate diagnostics of three major drought events in the amazon and illustrations of their seasonal precipitation predictions. Meteorol Appl 19:237–255

    Google Scholar 

  • Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Martin G (2011) Development and evaluation of an earth-system model-HadGEM2. Geosci Model Dev 4:1051

    Google Scholar 

  • Cook KH, Vizy EK (2006) South American climate during the last glacial maximum: delayed onset of the South American monsoon. J Geophys Res 111:D02110

    Google Scholar 

  • Cruz FWJ, Burns SJ, Karmann I, Sharp WD, Vuille M, Cardoso AO, Ferrari JA, Silva Dias PL, Viana OJ (2005) Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434:63–66

    Google Scholar 

  • Cruz FW, Burns SJ, Karmann I, Sharp WD, Vuille M (2006) Reconstruction of regional atmospheric circulation features during the late pleistocene in subtropical Brazil from oxygen isotope composition of speleothems, earth planet. Sci Lett 248:495–507

    Google Scholar 

  • Cruz FW, Vuille M, Burns SJ, Wang X, Cheng H, Werner M, Edwards RL, Karmann I, Auler AS, Nguyen H (2009) Orbitally driven east-west anti-phasing of South American precipitation. Nat Geosci 2:210–214

    Google Scholar 

  • De Almeida RAF, Nobre P, Haarsma RJ, Campos EJD (2007) Negative ocean-atmosphere feedback in the South Atlantic convergence zone. Geophys Res Lett 34:L18809

    Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Google Scholar 

  • Dike VN, Shimizu MH, Diallo M, Lin Z, Nwofor OK, Chineke TC (2015) Modelling present and future African climate using CMIP5 scenarios in HadGEM2-ES. Int J Climatol 35:1784–1799

    Google Scholar 

  • Donohoe A, Marshall J, Ferreira D, McGee D (2013) The relationship between ITCZ location and cross-equatorial atmospheric heat transport; from the seasonal cycle to the last glacial maximum. J Clim 26:3597–3618

    Google Scholar 

  • Dufresne JL, Foujols MA, Denvil S et al (2013) Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Clim Dyn 40:2123–2165

    Google Scholar 

  • Espinoza JC, Ronchail J, Marengo JA, Segura H (2019) Contrasting North-South changes in Amazon wet-day and dry-day frequency and related atmospheric features (1981–2017). Clim Dyn 52(9–10):5413–5430

    Google Scholar 

  • Gan MA, Kousky VE, Ropelewski CF (2004) The South America monsoon circulation and its relationship to rainfall over West-Central Brazil. J Climate 17:47–66

    Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R, Marengo JA (2009) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195

    Google Scholar 

  • Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang Z-L, Zhang M (2011) The community climate system model version 4. J Clim 24:4973–4991

    Google Scholar 

  • Giorgetta MA et al (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. J Adv Model Earth Syst 5:572–597

    Google Scholar 

  • Harrison SP, Kutzbach JE, Liu Z, Bartlein PJ, Otto-Bliesner B, Muhs D, Prentice IC, Thompson RS (2003) Mid-Holocene climates of the Americas: a dynamical response to changed seasonality. Clim Dyn 20:663–688

    Google Scholar 

  • Haug GH, Hughen KA, Sigman DM, Peterson LC, Rohl U (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293:1304–1308

    Google Scholar 

  • Jones CD, Carvalho LMV (2013) Climate change in the South American monsoon system: present climate and CMIP5 simulations. J Clim 26:6257–6286

    Google Scholar 

  • Jones CD, Hughes JK, Bellouin N, Hardiman SC, Jones GS, Knight J, Liddicoat S, O’Connor FM, Andres RJ, Bell C, Boo K-O, Bozzo A, Butchart N, Cadule P, Corbin KD, Doutriaux-Boucher M, Friedlingstein P, Gornall J, Gray L, Halloran PR, Hurtt G, Ingram WJ, Lamarque J-F, Law RM, Meinshausen M, Osprey S, Palin EJ, Parsons Chini L, Raddatz T, Sanderson MG, Sellar AA, Schurer A, Valdes P, Wood N, Woodward S, Yoshioka M, Zerrouka M (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4:543–570

    Google Scholar 

  • Kanner LC, Burns SJ, Cheng H, Edwards RL (2012) High-latitude forcing of the South American summer monsoon during the last glacial. Science 335,(6068):570–573. https://doi.org/10.1126/science.1213397

    Article  Google Scholar 

  • Kanner LC, Burns SJ, Cheng H, Edwards RL, Vuille M (2013) High resolution variability of the South American summer monsoon over the last seven millennia: insights from a speleothem record from the central Peruvian Andes. Quat Sci Rev 75:1–10

    Google Scholar 

  • Kodama Y-M (1992) Large-scale common features of subtropical precipitation zones (the Baiu frontal zone, the SPCZ, and the SACZ), part I: characteristics of subtropical frontal zones. J Meteorol Soc Jpn 70:813–835

    Google Scholar 

  • Kodama Y-M (1993) Large-scale common features of sub-tropical convergence zones (the Baiu frontal zone, the SPCZ, and the SACZ), part II: conditions of the circulations for generating the STCZs. J Meteorol Soc Jpn 71:581–610

    Google Scholar 

  • Kousky VE (1988) Pentad outgoing longwave radiation climatology for the South American sector. Rev Bras Meteor 3:217–231

    Google Scholar 

  • Lenters JD, Cook KH (1997) On the origin of the bolivian high and related circulation features of the South American climate. J Atmos Sci 54:656–678

    Google Scholar 

  • Li G, Xie SP (2014) Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and doubled ITCZ problems. J Clim 27(4):1765–1780

    Google Scholar 

  • Liu X, Battisti DS (2015) The influence of orbital forcing of tropical insolation on the climate and isotopic composition of precipitation in South America. J Clim 28:4841–4862

    Google Scholar 

  • Liu Z, Otto-Bliesner B, Kutzbach J, Li L, Shields C (2003) Coupled climate simulation of the evolution of global monsoons in the holocene. J Clim 16:2472–2490

    Google Scholar 

  • Liu Z, Harrison SP, Kutzbach J, Otto-Bliesner B (2004) Global monsoons in the Mid-Holocene and oceanic feedback. Clim Dyn 22:157–182

    Google Scholar 

  • Maksic J, Shimizu MH, Sampaio G, Venancio IM, Cardoso M, Ferreira FA (2019) Simulation of the holocene climate over South America and impacts on the vegetation. Holocene 29(2):287–299

    Google Scholar 

  • Marengo JA, Tomasella J, Alves LM, Soares WR, Rodriguez DA (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett 38:L12703

    Google Scholar 

  • Marengo JA, Liebmann B, Grimm AM, Misra V, Silva Dias PL, Cavalcanti IFA, Saulo AC (2012) Recent developments on the South American monsoon system. Int J Climatol 32(1):1–21

    Google Scholar 

  • Marengo JA, Alves LM, Soares WR, Rodriguez DA, Camargo H, Riveros MP, Pabló AD (2013) Two contrasting severe seasonal extremes in tropical South America in 2012: flood in Amazonia and drought in northeast Brazil. J Clim 26(22):9137–9154

    Google Scholar 

  • McGee D, Donohoe A, Marshall J, Ferreira D (2014) Changes in the ITCZ location and cross-equatorial heat transport at the last glacial maximum, heinrich stadial 1, and the Mid-Holocene. Earth Planet Sci Lett 390:69–79

    Google Scholar 

  • Melo MLD, Marengo JA (2008) The influence of changes in orbital parameters over South American climate using the CPTEC AGCM: simulation of climate during the Mid-Holocene. Holocene 18:501–516

    Google Scholar 

  • Mohtadi M, Prange M, Steinke S (2016) Palaeoclimatic insights into forcing and response of monsoon rainfall. Nature 533:191–199

    Google Scholar 

  • Nobre P, Shukla J (1996) Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J Clim 9:2464–2479

    Google Scholar 

  • Novello V, Cruz F, Vuille M et al (2017) A high-resolution history of the South American monsoon from last glacial maximum to the holocene. Sci Rep 7:44267

    Google Scholar 

  • Prado LF, Wainer I, Chiessi CM (2013) Mid-Holocene PMIP3/CMIP5 model results: intercomparison for the South American monsoon system. Holocene 23(12):1915–1920

    Google Scholar 

  • Ramirez E, Hoffman G, Taupin JD, Francou B, Ribstein P, Caillon N, Ferron FA, Landais A, Petit JR, Pouyaud B, Schotterer U, Simoes JC, Stievenard M (2003) A new Andean deep ice core from Nevado Illimani (6350 m), Bolivia. Earth Planet Sci Lett 212:337–350

    Google Scholar 

  • Rotstayn LD, Jeffrey SJ, Collier MA, Dravitzki SM, Hirst AC, Syktus JI, Wong KK (2012) Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations. Atmos Chem Phys 12:6377–6404

    Google Scholar 

  • Schmidt GA et al (2014) Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J Adv Model Earth Syst 6:141–184

    Google Scholar 

  • Seltzer G, Rodbell D, Burns S (2000) Isotopic evidence for late quaternary climatic change in tropical South America. Geology 28:35–38

    Google Scholar 

  • Seth A, Rojas M, Rauscher SA (2010) CMIP3 projected changes in the annual cycle of the South American Monsoon. Clim Change 98:331–357

    Google Scholar 

  • Silva Dias PL, Turcq B, Silva Dias MAF, Braconnot P, Jorgetti T (2009) Mid-Holocene climate of tropical South America: a model-data approach. In: Vimeux F, Sylvestre F, Khodri M (eds) Past climate variability in South America and surrounding regions: from the Last Glacial Maximum to the Holocene. Springer, Dordrecht, pp 259–281. https://doi.org/10.1007/978-90-481-2672-9_11

    Google Scholar 

  • Strıkis NM, Cruz FW, Cheng H, Karmann I, Lawrence Edwards R, Vuille M, Wang X, De Paula MS, Novello VF, Auler AS (2011) Abrupt variations in South American monsoon rainfall during the holocene based on a speleothems record from central-eastern Brazil. Geology 39:1075–1078

    Google Scholar 

  • Sueyoshi T et al (2013) Set-up of the PMIP3 paleoclimate experiments conducted using an earth system model, MIROC-ESM. Geosci Model Dev 6:819–836

    Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Google Scholar 

  • Thompson LG, Mosley-Thompson E, Davis ME, Lin PN, Henderson KA, Cole-Dai J, Bolzan JF, Liu K (1995) Late Glacial stage and Holocene tropical ice core records from Huascaran, Peru. Science 269:46–50

    Google Scholar 

  • van Breukelen MR, Vonhof HB, Hellstrom JC, Wester WCG, Kroon D (2008) Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia. Earth Planet Sci Lett 275:54–60

    Google Scholar 

  • Vera C, Silvestri G (2009) Precipitation interannual variability in South America from the WCRP-CMIP3 multi-model dataset. Clim Dyn 32:1003–1014

    Google Scholar 

  • Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud R, Gochis D, Gutzler D, Lettenmaier D, Marengo J, Mechoso CR, Nogues-Paegle J, Dias PL, Zhang C (2006) Toward a Unified View of the American Monsoon Systems. J Clim 19:4977–5000

    Google Scholar 

  • Virji H (1981) A preliminary study of summertime tropospheric circulation patterns over South America estimated from cloud winds. Mon Weather Rev 109:599–610

    Google Scholar 

  • Voldoire A, Sanchez-Gomez E, y Mélia DS, et al (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121

    Google Scholar 

  • Wang X, Edwards RL, Auler AS, Cheng H, Kong X, Wang Y, Cruz FW, Dorale JA, Chiang HW (2017) Hydroclimate changes across the Amazon lowlands over the past 45,000 years. Nature 541(7636):204

    Google Scholar 

  • Wang XY, Li X, Zhu J, Tanajura CA (2018) The strengthening of Amazonian precipitation during the wet season driven by tropical sea surface temperature forcing. Environ Res Lett 13(9):094015

    Google Scholar 

  • Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T et al (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci Mod Dev 4:845

    Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Amer Meteor Soc 78:2539–2558

    Google Scholar 

  • Xin X-G, Wu T-W, Zhang J (2013) Introduction of CMIP5 experiments carried out with the climate system models of Beijing climate center. Adv Clim Change Res 4:41–49

    Google Scholar 

  • Yin L, Fu R, Shevliakova E, Dickinson RE (2013) How well can CMIP5 simulate precipitation and its controlling processes over tropical South America? Clim Dyn 41:3127–3143

    Google Scholar 

  • Yoon JH, Zeng N (2010) An Atlantic influence on Amazon rainfall. Clim Dyn 34:249–264

    Google Scholar 

  • Yukimoto S et al (2012) A new global climate model of the meteorological research institute: MRI-CGCM3—model description and basic performance. J Meteorol Soc Jpn 90:23–64

    Google Scholar 

  • Zhang X, Liu H, Zhang M (2015) Double ITCZ in coupled ocean-atmosphere models: from CMIP3 to CMIP5. Geophys Res Lett 42(20):8651–8659

    Google Scholar 

Download references

Funding

M.H. Shimizu would like to acknowledge FAPESP for the financial support through the PAlaeo-Constraints on Monsoon Evolution and Dynamics (PACMEDY) project (No. 2016/24014-9) and Climate Research and Education in the Americas using Tree-ring and Speleothem Examples (PIRE-CREATE) project (No. 2017-50085-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Shimizu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimizu, M.H., Sampaio, G., Venancio, I.M. et al. Seasonal changes of the South American monsoon system during the Mid-Holocene in the CMIP5 simulations. Clim Dyn 54, 2697–2712 (2020). https://doi.org/10.1007/s00382-020-05137-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05137-1

Keywords

Navigation