A modelling exploration of the sensitivity of the India’s climate to irrigation

Abstract

The Indian subcontinent is one of the most highly irrigated regions of the world where water use has intensified since the second half of the twentieth century. This agricultural intensification has resulted in changes in the water and energy balance between land surface and atmosphere is affected by these changes, which further influences climatic parameters that directly affect us. Over India, the practice of irrigation has changed in recent years resulting in an increased agricultural productivity as well as a depletion of groundwater. In this study, we use the Community Earth System Model CESM1.2 (Community Land Model (CLM4.5) with an active crop model coupled to the Community Atmospheric Model and a slab ocean) to examine the sensitivity of India’s climate to the amount of irrigation. We vary the amount of irrigation water by varying the irrigation factor in the CLM4.5 to produce a range of conditions from a bare minimum of no water stress in the crop to saturated soil. By holding all other forcings constant at year 2000 levels, we are able to examine the changes in temperature and precipitation over India due to varying amounts of irrigation. We find that irrigation decreases the maximum and minimum temperatures by nearly 3 °C and 4 °C respectively over the most heavily irrigated parts of the Indian subcontinent as a result of increased latent heat partitioning of energy. The resultant cooling (about 4% in annual mean temperature across India) impacts the monsoon circulation and reduces the moisture transport resulting in a statistically significant decrease of 1.46–4.17% in the all India summer monsoon rainfall with a decrease over the eastern part of the Gangetic basin and an increase over the Punjab region of Pakistan and India. While the large effect on temperature and precipitation may be a result of the model simulations having an irrigation seasonality that peaks in the pre-monsoon months, there is significant disagreement across different model based irrigation estimates on the timing and amount of the peak irrigation water added. This uncertainty in irrigation needs to be resolved to better understand its effects on India’s climate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Adegoke JO, Pielke RA, Eastman J, Mahmood R, Hubbard KG (2003) Impact of irrigation on midsummer surface fluxes and temperature under dry synoptic conditions: a regional atmospheric model study of the U.S. high plains. Mon Weather Rev 131:556–564. https://doi.org/10.1175/1520-0493(2003)131%3c0556:IOIOMS%3e2.0.CO;2

    Article  Google Scholar 

  2. Aeschbach-Hertig W, Gleeson T (2012) Regional strategies for the accelerating global problem of groundwater depletion. Nat Geosci 5(12):853–861. https://doi.org/10.1038/ngeo1617

    Article  Google Scholar 

  3. Alter RE, Fan Y, Lintner BR, Weaver CP (2015a) Observational evidence that great plains irrigation has enhanced summer precipitation intensity and totals in the Midwestern United States. J Hydrometeorol. https://doi.org/10.1175/JHM-D-14-0115.1

    Article  Google Scholar 

  4. Alter R, Im E-S, Eltahir E (2015b) Rainfall consistently enhanced around the Gezira Scheme in East Africa due to irrigation. Nat Geosci 8:763–767. https://doi.org/10.1038/ngeo2514

    Article  Google Scholar 

  5. Alter RE, Douglas HC, Winter JM, Eltahir EAB (2018) Twentieth century regional climate change during the summer in the central United States attributed to agricultural intensification. Geophys Res Lett 45:1586–1594. https://doi.org/10.1002/2017GL075604

    Article  Google Scholar 

  6. Ambika A, Wardlow B, Mishra V (2016) Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015. Sci Data 3:160118. https://doi.org/10.1038/sdata.2016.118

    Article  Google Scholar 

  7. Amrith SS (2018) Risk and the South Asian monsoon. Clim Change 151:17–28. https://doi.org/10.1007/s10584-016-1629-x

    Article  Google Scholar 

  8. Arora VK (2002) Modeling vegetation as a dynamic component in soil–vegetation–atmosphere transfer schemes and hydrological models. Rev Geophys 40(2):1. https://doi.org/10.1029/2001RG000103

    Article  Google Scholar 

  9. Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB, Delire C, Mirin A (2007) Combined climate and carbon-cycle effects of large-scale deforestation. Proc Natl Acad Sci 104:6550–6555. https://doi.org/10.1073/pnas.0608998104

    Article  Google Scholar 

  10. Barnston SG, Schickedanz PT (1984) The effect of irrigation on warm season precipitation in the southern Great Plains. J Clim Appl Meteorol 23:865–888

    Article  Google Scholar 

  11. Biemans H, Siderius C, Mishra A, Ahmad B (2016) Crop-specific seasonal estimates of irrigation-water demand in South Asia. Hydrol Earth Syst Sci 20:1971–1982. https://doi.org/10.5194/hess-20-1971-2016

    Article  Google Scholar 

  12. Bollasina MA (2014) Hydrology: probing the monsoon pulse. Nat Clim Chang 4:422–423. https://doi.org/10.1038/nclimate2243

    Article  Google Scholar 

  13. Bonfils C, Lobell D (2007) Empirical evidence for a recent slowdown in irrigation-induced cooling. Proc Natl Acad Sci 104:13582–13587. https://doi.org/10.1073/pnas.0700144104

    Article  Google Scholar 

  14. Boucher O, Myhre G, Myhre A (2004) Direct human influence of irrigation on atmospheric water vapour and climate. Clim Dyn 22(6–7):597–603. https://doi.org/10.1007/s00382-004-0402-4

    Article  Google Scholar 

  15. Claverie M, Vermote E, Program NOAACDR (2014) NOAA climate data record (CDR) of leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FAPAR), version 4. NOAA Natl Centers Environ Inf. https://doi.org/10.7289/V5M043BX

    Article  Google Scholar 

  16. Cook B, Shukla S, Puma M, Nazarenko L (2015) Irrigation as an historical climate forcing. Clim Dyn 44:1715–1730. https://doi.org/10.1007/s00382-014-2204-7

    Article  Google Scholar 

  17. de Vrese P, Hagemann S, Claussen M (2016) Asian irrigation, African rain: remote impacts of irrigation. Geophys Res Lett 43:2016GL068146. https://doi.org/10.1002/2016gl068146

    Article  Google Scholar 

  18. DeAngelis A, Dominguez F, Fan Y, Robock A, Kustu MD, Robinson D (2010) Evidence of enhanced precipitation due to Irrigation over the Great Plains of the United States. J Geophys Res Atmos. https://doi.org/10.1029/2010JD013892

    Article  Google Scholar 

  19. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  20. Devaraju N, Bala G, Nemani R (2015a) Modelling the influence of land-use changes on biophysical and biochemical interactions at regional and global scales. Plant, Cell Environ 38:1931–1946. https://doi.org/10.1111/pce.12488

    Article  Google Scholar 

  21. Devaraju N, Bala G, Modak A (2015b) Effects of large-scale deforestation on precipitation in the monsoon regions: Remote versus local effects. Proc Natl Acad Sci 112:3257–3262. https://doi.org/10.1073/pnas.1423439112

    Article  Google Scholar 

  22. Döll P, Hoffmann-Dobrev H, Portmann FT, Siebert S, Eicker A, Rodell M, Strassberg G, Scanlon BR (2012) Impact of water withdrawals from groundwater and surface water on continental water storage variations. J Geodyn 59–60(September):143–156. https://doi.org/10.1016/J.JOG.2011.05.001

    Article  Google Scholar 

  23. Douglas EM, Dev Niyogi S, Frolking JB, Yeluripati RA, Pielke NN, Vörösmarty CJ, Mohanty UC (2006) Changes in moisture and energy fluxes due to agricultural land use and irrigation in the Indian monsoon belt. Geophys Res Lett 33(14):L14403. https://doi.org/10.1029/2006GL026550

    Article  Google Scholar 

  24. Douglas EM, Beltrán-Przekurat A, Niyogi D, Pielke RA, Vörösmarty CJ (2009) The impact of agricultural intensification and irrigation on land–atmosphere interactions and Indian monsoon precipitation—a mesoscale modeling perspective. Glob Planet Change 67:117–128. https://doi.org/10.1016/j.gloplacha.2008.12.007

    Article  Google Scholar 

  25. Eltahir Elfatih A B (1998) A soil moisture-rainfall feedback mechanism: 1. Theory and observations. Water Resour Res 34(4):765–776. https://doi.org/10.1029/97WR03499

    Article  Google Scholar 

  26. Freydank K, Siebert S (2008) Towards mapping the extent of irrigation in the last century: time series of irrigated area per country. Technical report 8. Institute of Physical Geography, University of Frankfurt, Frankfurt

  27. Guimberteau M, Laval K, Perrier A, Polcher J (2012) Global effect of irrigation and its impact on the onset of the Indian summer monsoon. Clim Dyn 39:1329–1348. https://doi.org/10.1007/s00382-011-1252-5

    Article  Google Scholar 

  28. Harding KJ, Snyder PK, Harding KJ, Snyder PK (2012a) Modeling the atmospheric response to irrigation in the great plains. Part I: General impacts on precipitation and the energy budget. J Hydrometeorol 13(6):1667–1686. https://doi.org/10.1175/JHM-D-11-098.1

    Article  Google Scholar 

  29. Harding KJ, Snyder PK, Harding KJ, Snyder PK (2012b) Modeling the atmospheric response to irrigation in the great plains. Part II: The precipitation of irrigated water and changes in precipitation recycling. J Hydrometeorol 13(6):1687–1703. https://doi.org/10.1175/JHM-D-11-099.1

    Article  Google Scholar 

  30. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Climatol 34(3):623–642. https://doi.org/10.1002/joc.3711

    Article  Google Scholar 

  31. Hunke EC, Lipscomb WH, Turner AK (2010) CICE: the Los Alamos sea ice model documentation and software user’s manual version 4.1 LA-CC-06-012. T-3 Fluid Dyn. Group, Los Alamos Natl. Lab

  32. Hurrell JW et al (2012) The community earth system model: a framework for collaborative research. Bull Am Meteorol Soc 94:1339–1360. https://doi.org/10.1175/BAMS-D-12-00121.1

    Article  Google Scholar 

  33. Im E-S, Marcella MP, Eltahir EAB (2013) Impact of potential large-scale irrigation on the West African monsoon and its dependence on location of irrigated area. J Clim 27:994–1009. https://doi.org/10.1175/JCLI-D-13-00290.1

    Article  Google Scholar 

  34. India Economy Survey (2018) Ministry of Finance, Government of India. http://mofapp.nic.in:8080/economicsurvey/pdf/082-101_Chapter_06_ENGLISH_Vol_01_2017-18.pdf. Retrieved 24 June 2019

  35. James KS (2011) India’s demographic change: opportunities and challenges. Science 333:576–580

    Article  Google Scholar 

  36. Jiang L, Ma E, Deng X (2014) Impacts of irrigation on the heat fluxes and near-surface temperature in an inland irrigation area of Northern China. Energies. https://doi.org/10.3390/en7031300

    Article  Google Scholar 

  37. Kalnay E, Cai M (2003) Impact of urbanization and land-use change on climate. Nature 423:528–531. https://doi.org/10.1038/nature01675

    Article  Google Scholar 

  38. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77(3):437–471. https://doi.org/10.1175/1520-0477(1996)077%3c0437:TNYRP%3e2.0.CO;2

    Article  Google Scholar 

  39. KanthaRao B, Rakesh V (2018) Observational Evidence for the Relationship between Spring Soil Moisture and June Rainfall over the Indian Region. Theoret Appl Climatol 132(3–4):835–849. https://doi.org/10.1007/s00704-017-2116-7

    Article  Google Scholar 

  40. Kucharik CJ, Brye KR (2003) Integrated BIosphere Simulator (IBIS) yield and nitrate loss predictions for Wisconsin maize receiving varied amounts of nitrogen fertilizer. J Environ Qual 32:247–2013268

    Article  Google Scholar 

  41. Kucharik CJ, Foley JA, Delire C, Fisher VA, Coe MT, Lenters JD, Young-Molling C, Ramankutty N (2000) Testing the performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure. Global Biogeochem Cycles 14:795–825

    Article  Google Scholar 

  42. Kueppers L, Snyder M (2012) Influence of irrigated agriculture on diurnal surface energy and water fluxes, surface climate, and atmospheric circulation in california. Clim Dyn 38(5–6):1017–1029

    Article  Google Scholar 

  43. Kueppers LM, Snyder MA, Sloan LC (2007) Irrigation cooling effect: regional climate forcing by land-use change. Geophys Res Lett. https://doi.org/10.1029/2006GL028679

    Article  Google Scholar 

  44. Kueppers LM, Snyder MA, Sloan LC, Cayan D, Jin J, Kanamaru H, Kanamitsu M, Miller NL, Tyree M, Due H, Weare B (2008) Seasonal temperature responses to land-use change in the Western United States. Global Planet Change 60(3–4):250–265

    Article  Google Scholar 

  45. Lawrence DM, Hurtt GC, Arneth A, Brovkin V, Calvin KV, Jones AD, Jones CD, Lawrence PJ, de Noblet-Ducoudré N, Pongratz J, Seneviratne SI, Shevliakova E (2016) the land use model intercomparison project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci Model Dev 9:2973–2998. https://doi.org/10.5194/gmd-9-2973-2016

    Article  Google Scholar 

  46. Lee E, Chase T, Rajagopalan B, Barry R, Biggs T, Lawrence P (2009) Effects of irrigation and vegetation activity on early Indian summer monsoon variability. Int J Clim 29:573–581. https://doi.org/10.1002/joc.1721

    Article  Google Scholar 

  47. Leng G, Tang Q, Huang M, Leung LR (2015) A comparative analysis of the impacts of climate change and irrigation on land surface and subsurface hydrology in the North China Plain. Reg Environ Chang 15:251–263. https://doi.org/10.1007/s10113-014-0640-x

    Article  Google Scholar 

  48. Levine RC, Turner AG, Marathayil D, Martin GM (2013) The role of northern Arabian Sea surface temperature biases in CMIP5 model simulations and future projections of Indian summer monsoon rainfall. https://doi.org/10.1007/s00382-012-1656-x

    Article  Google Scholar 

  49. Lo MH, Famiglietti JS (2013) Irrigation in California’s Central Valley strengthens the southwestern U.S. water cycle. Geophys Res Lett 40:301–306. https://doi.org/10.1002/grl.50108

    Article  Google Scholar 

  50. Lobell DB, Bala G, Duffy PB (2006) Biogeophysical impacts of cropland management changes on climate. Geophys Res Lett 33(6):L06708. https://doi.org/10.1029/2005GL025492

    Article  Google Scholar 

  51. Lobell DB, Bonfils C, Faurès J-M (2008a) The role of irrigation expansion in past and future temperature trends. Earth Interact 12:1–11. https://doi.org/10.1175/2007EI241.1

    Article  Google Scholar 

  52. Lobell DB, Bonfils CJ, Kueppers LM, Snyder MA (2008b) Irrigation cooling effect on temperature and heat index extremes. Geophys Res Lett. https://doi.org/10.1029/2008GL034145

    Article  Google Scholar 

  53. Lobell D, Bala G, Mirin A, Phillips T, Maxwell R, Rotman D (2009) Regional differences in the influence of irrigation on climate. J Clim 22:2248–2255. https://doi.org/10.1175/2008JCLI2703.1

    Article  Google Scholar 

  54. Lohar D, Pal B (1995) The effect of irrigation on premonsoon season precipitation over south west Bengal, India. J Clim 8(10):2567–2570

    Article  Google Scholar 

  55. Luyssaert S et al (2014) Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat Clim Change 4(5):389–393. https://doi.org/10.1038/nclimate2196

    Article  Google Scholar 

  56. Mahmood R, Pielke RA, Hubbard KG, Niyogi D, Bonan G, Lawrence P, McNider R et al (2009) Impacts of land use/land cover change on climate and future research priorities. Bull Am Meteor Soc 91(1):37–46. https://doi.org/10.1175/2009bams2769.1

    Article  Google Scholar 

  57. Martens B (2017) GLEAM ~ v3: satellite-based land evaporation and root-zone soil moisture. Geosci Model Dev 10:1903–1925. https://doi.org/10.5194/gmd-10-1903-2017

    Article  Google Scholar 

  58. Miralles DG, Holmes TRH, De Jeu RAM, Gash JH, Meesters AGCA, Dolman AJ (2011) Global land-surface evaporation estimated from satellite-based observations. Hydrol Earth Syst Sci 15:453–469. https://doi.org/10.5194/hess-15-453-2011

    Article  Google Scholar 

  59. Mueller B, Hirschi M, Jimenez C, Ciais P, Dirmeyer PA, Dolman AJ, Fisher JB, Jung M, Ludwig F, Maignan F, Miralles D, McCabe MF, Reichstein M, Sheffield J, Wang KC, Wood EF, Zhang Y, Seneviratne SI (2013) Benchmark products for land evapotranspiration: LandFlux-EVAL multi-dataset synthesis. Hydrol Earth Syst Sci 17:3707–3720. https://doi.org/10.5194/hess-17-3707-2013

    Article  Google Scholar 

  60. Neale RB et al (2012) Description of the NCAR community atmosphere model (CAM 5.0). NCAR Tech. Note NCAR/TN-486 + STR

  61. Niyogi D, Kishtawal C, Tripathi S, Govindaraju RS (2010) Observational evidence that agricultural intensification and land use change may be reducing the Indian Summer monsoon rainfall. Water Resour Res 46(3):1. https://doi.org/10.1029/2008WR007082

    Article  Google Scholar 

  62. NMSA, National Mission on Sustainable Agriculture (2014) Operational guidelines, Ministry of Agriculture, Govt. of India. https://nmsa.dac.gov.in/pdfdoc/NMSA_Guidelines_English.pdf. Accessed 27 May 2019

  63. Oleson KW, Lawrence DM, Bonan GB, Drewniak B, Huang M, Koven CD, Levis S, Li F, Riley WJ, Subin ZM, Swenson SC, Thornton PE, Bozbiyik A, Fisher R, Kluzek E, Lamarque JF, Lawrence PJ, Leung LR, Lipscomb W, Muszala S, Ricciuto DM, Sacks W, Sun Y, Tang J, Yang ZL (2013) Technical description of version 4.5 of the community land model (CLM). Ncar Technical Note NCAR/TN-503 + STR, National Center for Atmospheric Research, Boulder, CO, p 422. https://doi.org/10.5065/d6rr1w7m

  64. Parthasarathy B, Munot AA, Kothawale DR (1994) All-India monthly and seasonal rainfall series: 1871–1993. Theor Appl Climatol 49:217–224. https://doi.org/10.1007/BF00867461

    Article  Google Scholar 

  65. Pathak A, Ghosh S, Kumar P, Pathak A, Ghosh S, Kumar P (2014) Precipitation recycling in the Indian subcontinent during summer monsoon. J Hydrometeorol 15(5):2050–2066

    Article  Google Scholar 

  66. Paul S, Ghosh S, Oglesby R, Pathak A, Chandrasekharan A, Ramsankaran R (2016) Weakening of Indian summer monsoon rainfall due to changes in land use land cover. Sci Rep 6:32177. https://doi.org/10.1038/srep32177

    Article  Google Scholar 

  67. Pei L, Moore N, Zhong S, Kendall AD, Gao Z, Hyndman DW (2016) Effects of irrigation on summer precipitation over the United States. J Clim 29:3541–3558. https://doi.org/10.1175/JCLI-D-15-0337.1

    Article  Google Scholar 

  68. Pielke RA (2001) Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev Geophys 39(2):151–177. https://doi.org/10.1029/1999RG000072

    Article  Google Scholar 

  69. Pielke RA, Marland G, Betts RA, Chase TN, Eastman JL, Niles JO, Niyogi DS, Running SW (2002) The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases. In: Swingland IR, Bettelheim EC, Grace J, Prance GT, Saunders LS (eds) Philos Trans R Soc Lond Ser A Math Phys Eng Sci 360(1797):1705–1719. https://doi.org/10.1098/rsta.2002.1027

    Article  Google Scholar 

  70. Pielke R, Sr., Adegoke J, Beltrán-Przekurat A, Hiemstra C, Lin J, Nair U, Niyogi D, Nobis T (2007) An overview of regional land-use and land-cover impacts on rainfall. Tellus (B) 59. citeulike-article-id:13090283

  71. Pielke RA, Pitman A, Niyogi D, Mahmood R, McAlpine C, Hossain F, Goldewijk KK et al (2011) Land use/land cover changes and climate: modeling analysis and observational evidence. Wiley Interdiscip Rev Clim Change 2(6):828–850. https://doi.org/10.1002/wcc.144

    Article  Google Scholar 

  72. Pitman AJ, Arneth A, Ganzeveld L (2012) Regionalizing global climate models. Int J Climatol 32(3):321–337. https://doi.org/10.1002/joc.2279

    Article  Google Scholar 

  73. Portmann FT, Siebert S, Döll P (2010) MIRCA2000—global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Global Biogeochem Cycles 24:GB1011. https://doi.org/10.1029/2008gb003435

    Article  Google Scholar 

  74. Puma MJ, Cook BI (2010) Effects of irrigation on global climate during the 20th century. J Geophys Res 115:D16120. https://doi.org/10.1029/2010jd014122

    Article  Google Scholar 

  75. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999–1002. https://doi.org/10.1038/nature08238

    Article  Google Scholar 

  76. Roy S, Sen R, Mahmood D, Niyogi M, Lei SA, Foster KG, Hubbard E Douglas, Pielke R Sr (2007) Impacts of the agricultural Green Revolution–induced land use changes on air temperatures in India. J Geophys Res Atmos. https://doi.org/10.1029/2007JD008834

    Article  Google Scholar 

  77. Roy S, Mahmood R, Quintanar AI, Gonzalez A (2011) Impacts of irrigation on dry season precipitation in India. Theor Appl Climatol 104:193–207. https://doi.org/10.1007/s00704-010-0338-z

    Article  Google Scholar 

  78. Sacks WJ, Benjamin AE, Cook I, Nikolaus AE, Ae B, Levis S, Helkowski JH (2009) Effects of global irrigation on the near-surface climate. Clim Dyn 33(2–3):159–175. https://doi.org/10.1007/s00382-008-0445-z

    Article  Google Scholar 

  79. Saeed F, Hagemann S, Jacob D (2009) Impact of irrigation on the South Asian summer monsoon. Geophys Res Lett. https://doi.org/10.1029/2009gl040625

    Article  Google Scholar 

  80. Shah HL, Zhou T, Huang M, Mishra V (2019) Strong influence of irrigation on water budget and land surface temperature in indian subcontinental river basins. J Geophys Res Atmos 124:1449–1462. https://doi.org/10.1029/2018JD029132

    Article  Google Scholar 

  81. Shiklomanov IA (2000) Appraisal and assessment of world water resources. Water Int 25:11–32

    Article  Google Scholar 

  82. Shukla S, Puma M, Cook B (2014) The response of the South Asian Summer Monsoon circulation to intensified irrigation in global climate model simulations. Clim Dyn 42:21–36. https://doi.org/10.1007/s00382-013-1786-9

    Article  Google Scholar 

  83. Siebert S, Doll P, Feick S, Hoogeveen J (2005a) Global map of irrigated areas version 2.2, Johann Wolfgang Goethe University, Frankfurt am Main, Germany/Food and Agriculture Organization of the United Nations, Rome, Italy

  84. Siebert S, Döll P, Hoogeveen J, Faures JM, Frenken K, Feick S (2005b) Development and validation of the global map of irrigation areas. Hydrol Earth Syst Sci 9:535–547. https://doi.org/10.5194/hess-9-535-2005

    Article  Google Scholar 

  85. Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J, Döll P, Portmann FT (2010) Groundwater use for irrigation—a global inventory. Hydrol Earth Syst Sci 14:1863–1880. https://doi.org/10.5194/hess-14-1863-2010

    Article  Google Scholar 

  86. Singh R, AchutaRao K (2018) Quantifying uncertainty in twenty-first century climate change over India. Clim Dyn. https://doi.org/10.1007/s00382-018-4361-6

    Article  Google Scholar 

  87. Smith R, Jones P, Briegleb B, Bryan F, Danabasoglu G, Dennis J, Dukowicz J et al (2010) The parallel ocean program (POP) reference manual ocean component of the community climate system model (CCSM) and community earth system model (CESM)1

  88. Song X-P, Hansen MC, Stehman SV, Potapov PV, Tyukavina A, Vermote EF, Townshend JR (2018) Global land change from 1982 to 2016. Nature 560(7720):639–643. https://doi.org/10.1038/s41586-018-0411-9

    Article  Google Scholar 

  89. Sperber KR, Annamalai H, Kang IS, Kitoh A, Moise A, Turner A, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn. https://doi.org/10.1007/s00382-012-1607-6

    Article  Google Scholar 

  90. Stocker TF, Qin D, Plattner G-K, Alexander LV, Allen SK, Bindoff NL, Bréon F-M, Church JA, Cubasch U, Emori S, Forster P, Friedlingstein P, Gillett N, Gregory JM, Hartmann DL, Jansen E, Kirtman B, Knutti R, Krishna Kumar K, Lemke P, Marotzke J, Masson-Delmotte V, Meehl GA, Mokhov II, Piao S, Ramaswamy V, Randall D, Rhein M, Rojas M, Sabine C, Shindell D, Talley LD, Vaughan DG, Xie S-P (2013) Technical Summary. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis: Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  91. Stull RB (1988) An introduction to boundary layer meteorology. Springer, New York

    Google Scholar 

  92. Thiery W, Davin E, Lawrence D, Hirsch A, Hauser M, Seneviratne S (2017) Present-day irrigation mitigates heat extremes. J Geophys Res Atmos 122:2016JD025740. https://doi.org/10.1002/2016jd025740

    Article  Google Scholar 

  93. Tuinenburg OA, Vries JPR (2017) Irrigation patterns resemble ERA-interim reanalysis soil moisture additions. Geophys Res Lett 2017GL074884. https://doi.org/10.1002/2017gl074884

    Article  Google Scholar 

  94. Tuinenburg OA, Hutjes RWA, Kabat P (2012) The fate of evaporated water from the Ganges basin. J Geophys Res Atmos. https://doi.org/10.1029/2011JD016221

    Article  Google Scholar 

  95. Tuinenburg RWA, Hutjes T, Stacke A Wiltshire, Lucas-Picher P (2014) Effects of irrigation in India on the atmospheric water budget. J Hydrometeorol 15(3):1028–1050. https://doi.org/10.1175/JHM-D-13-078.1

    Article  Google Scholar 

  96. van Oldenborgh GJ, Philip S, Kew S, van Weele M, Uhe P, Otto F, Singh R, Pai I, Cullen H, AchutaRao K (2018) Extreme heat in india and anthropogenic climate change. Nat Hazards Earth Syst Sci 18(1):365–381. https://doi.org/10.5194/nhess-18-365-2018

    Article  Google Scholar 

  97. Wen L, Jin J (2012) Modelling and analysis of the impact of irrigation on local arid climate over northwest China. Hydrol Process 26:445–453. https://doi.org/10.1002/hyp.8142

    Article  Google Scholar 

  98. Wisser D, Fekete BM, Vörösmarty CJ, Schumann AH (2010) Reconstructing 20th century global hydrography: a contribution to the global terrestrial network-hydrology (GTN-H). Hydrol Earth Syst Sci 14(1):1–24. https://doi.org/10.5194/hess-14-1-2010

    Article  Google Scholar 

  99. Wollheim WM, Peterson BJ, Vorosmarty CJ, Hopkinson CS, Thomas SA (2008) Dynamics of N removal over annual time scales in a suburban river network. J Geophys Res Biogeosci. https://doi.org/10.1029/2007JG000660

    Article  Google Scholar 

  100. Yoshikawa S, Cho J, Yamada HG, Hanasaki N, Kanae S (2014) An assessment of global net irrigation water requirements from various water supply sources to sustain irrigation: rivers and reservoirs (1960–2050). Hydrol Earth Syst Sci 18(10):4289–4310. https://doi.org/10.5194/hess-18-4289-2014

    Article  Google Scholar 

  101. Zeng Z, Piao S, Li Laurent Z X, Zhou L, Ciais P, Wang T, Li Y et al (2017) Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat Clim Change 7(6):432–436. https://doi.org/10.1038/nclimate3299

    Article  Google Scholar 

Download references

Acknowledgements

The model simulations were carried out on IIT Delhi’s Padum Hybrid HPC System with funding from the Department of Science and Technology, Government of India under the FIST programme (Grant no. DSTXD1101). The authors also thank Somnath Baidya Roy and Vimal Mishra for useful discussions and Saran Aadhar for providing the GLEAM data averaged over the Indo-Gangetic plain.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Krishna AchutaRao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3959 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mathur, R., AchutaRao, K. A modelling exploration of the sensitivity of the India’s climate to irrigation. Clim Dyn 54, 1851–1872 (2020). https://doi.org/10.1007/s00382-019-05090-8

Download citation