An N, Wang K (2015) A comparison of MODIS-derived cloud fraction with surface observations at five SURFRAD sites. J Appl Meteorol Climatol 54:1009–1020
Article
Google Scholar
Bergman JW, Salby ML (1997) The role of cloud diurnal variations in the time-mean energy budget. J Clim 10:1114–1124. https://doi.org/10.1175/1520-0442(1997)010%3c1114:TROCDV%3e2.0.CO;2
Article
Google Scholar
Bony S, Dufresne J-L (2005) Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys Res Lett 2005:32. https://doi.org/10.1029/2005GL023851
Article
Google Scholar
Bony S, Colman R, Kattsov VM et al (2006) How well do we understand and evaluate climate change feedback processes? J Clim 19:3445–3482. https://doi.org/10.1175/JCLI3819.1
Article
Google Scholar
Bony S, Webb M, Bretherton CS et al (2011) CFMIP: towards a better evaluation and understanding of clouds and cloud feedbacks in CMIP5 models. Clivar Exch 56:20–22
Google Scholar
Boucher O, Randall D, Artaxo P, et al (2013) Clouds and Aerosols. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate CHANGE 2013: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York, pp 571–658
Cess RD, Potter GL, Blanchet JP et al (1989) Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science 245:513–516. https://doi.org/10.1126/science.245.4917.513
Article
Google Scholar
Cess RD, Potter GL, Blanchet JP et al (1990) Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J Geophys Res Atmospheres 95:16601–16615. https://doi.org/10.1029/JD095iD10p16601
Article
Google Scholar
Cess RD, Zhang MH, Ingram WJ et al (1996) Cloud feedback in atmospheric general circulation models: an update. J Geophys Res Atmospheres 101:12791–12794. https://doi.org/10.1029/96JD00822
Article
Google Scholar
Chen X, Tung K-K (2014) Varying planetary heat sink led to global-warming slowdown and acceleration. Science 345:897–903. https://doi.org/10.1126/science.1254937
Article
Google Scholar
Clark AJ, Gallus WA, Chen T-C (2007) Comparison of the diurnal precipitation cycle in convection-resolving and non-convection-resolving mesoscale models. Mon Weather Rev 135:3456–3473. https://doi.org/10.1175/MWR3467.1
Article
Google Scholar
Clement A, DiNezio P (2014) The tropical pacific ocean—back in the driver’s seat? Science 343:976–978. https://doi.org/10.1126/science.1248115
Article
Google Scholar
Clothiaux EE, Ackerman TP, Mace GG et al (2000) Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J Appl Meteorol 39:645–665. https://doi.org/10.1175/1520-0450(2000)039%3c0645:ODOCHA%3e2.0.CO;2
Article
Google Scholar
Colman R (2003) A comparison of climate feedbacks in general circulation models. Clim Dyn 20:865–873. https://doi.org/10.1007/s00382-003-0310-z
Article
Google Scholar
Dai A, Giorgi F, Trenberth KE (1999) Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J Geophys Res Atmos 104:6377–6402. https://doi.org/10.1029/98JD02720
Article
Google Scholar
Doelling DR, Loeb NG, Keyes DF et al (2013) Geostationary enhanced temporal interpolation for CERES flux products. J Atmos Ocean Technol 30:1072–1090. https://doi.org/10.1175/JTECH-D-12-00136.1
Article
Google Scholar
Duan J, Gao H, Schmalfuß B (2002) Stochastic dynamics of a coupled atmosphere–ocean model. Stoch Dyn 02:357–380. https://doi.org/10.1142/S0219493702000467
Article
Google Scholar
Eckmann J-P, Ruelle D (1985) Ergodic theory of chaos and strange attractors. In: The theory of chaotic attractors. Springer, pp 273–312
Ek MB, Holtslag AAM (2004) Influence of soil moisture on boundary layer cloud development. J Hydrometeorol 5:86–99. https://doi.org/10.1175/1525-7541(2004)005%3c0086:IOSMOB%3e2.0.CO;2
Article
Google Scholar
Ek M, Mahrt L (1994) Daytime evolution of relative humidity at the boundary-layer top. Mon Weather Rev 122:2709–2721. https://doi.org/10.1175/1520-0493(1994)122%3c2709:Deorha%3e2.0.Co;2
Article
Google Scholar
England MH, McGregor S, Spence P et al (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4:222–227. https://doi.org/10.1038/nclimate2106
Article
Google Scholar
Ford TW, Rapp AD, Quiring SM (2015) Does afternoon precipitation occur preferentially over dry or wet soils in Oklahoma? J Hydrometeorol 16:874–888. https://doi.org/10.1175/JHM-D-14-0005.1
Article
Google Scholar
Fyfe JC, Meehl GA, England MH et al (2016) Making sense of the early-2000 s warming slowdown. Nat Clim Change 6:224–228. https://doi.org/10.1038/nclimate2938
Article
Google Scholar
Gustafson WI, Ma P-L, Singh B (2014) Precipitation characteristics of CAM5 physics at mesoscale resolution during MC3E and the impact of convective timescale choice. J Adv Model Earth Syst 6:1271–1287. https://doi.org/10.1002/2014MS000334
Article
Google Scholar
Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys. https://doi.org/10.1029/2010rg000345
Article
Google Scholar
Kosaka Y, Xie S-P (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407. https://doi.org/10.1038/nature12534
Article
Google Scholar
Kotarba AZ (2009) A comparison of MODIS-derived cloud amount with visual surface observations. Atmos Res 92:522–530
Article
Google Scholar
Langhans W, Schmidli J, Fuhrer O et al (2013) Long-term simulations of thermally driven flows and orographic convection at convection-parameterizing and cloud-resolving resolutions. J Appl Meteorol Climatol 52:1490–1510. https://doi.org/10.1175/JAMC-D-12-0167.1
Article
Google Scholar
Li Z, Cribb MC, Chang FL, Trishchenko AP (2004) Validation of MODIS-retrieved cloud fractions using whole sky imager measurements at the three ARM sites. In: Proc. 14th ARM Science Team Meeting, pp 1–6
Loeb NG, Manalo-Smith N, Kato S et al (2003) Angular distribution models for top-of-atmosphere radiative flux estimation from the clouds and the earth’s radiant energy system instrument on the tropical rainfall measuring mission satellite. Part I: methodology. J Appl Meteorol 42:240–265. https://doi.org/10.1175/1520-0450(2003)042%3c0240:ADMFTO%3e2.0.CO;2
Article
Google Scholar
Loeb NG, Lyman JM, Johnson GC et al (2012) Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat Geosci 5:110–113. https://doi.org/10.1038/ngeo1375
Article
Google Scholar
Loeb NG, Doelling DR, Wang H et al (2018) Clouds and the earth’s radiant energy system (CERES) energy balanced and filled (EBAF) top-of-atmosphere (TOA) edition 4.0 data product. J Clim. https://doi.org/10.1175/JCLI-D-17-0208.1
Article
Google Scholar
Martin GM, Bellouin N, Collins WJ et al (2011) The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev 4:723–757. https://doi.org/10.5194/gmd-4-723-2011
Article
Google Scholar
Meehl GA, Hu A, Arblaster JM et al (2013) Externally forced and internally generated decadal climate variability associated with the interdecadal pacific oscillation. J Clim 26:7298–7310. https://doi.org/10.1175/JCLI-D-12-00548.1
Article
Google Scholar
Meehl GA, Teng H, Arblaster JM (2014) Climate model simulations of the observed early-2000 s hiatus of global warming. Nat Clim Change 4:898–902. https://doi.org/10.1038/nclimate2357
Article
Google Scholar
Miller RL (1997) Tropical thermostats and low cloud cover. J Clim 10:409–440. https://doi.org/10.1175/1520-0442(1997)010%3c0409:TTALCC%3e2.0.CO;2
Article
Google Scholar
Minnis P, Harrison EF (1984) Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data. Part III: november 1978 radiative parameters. J Clim Appl Meteorol 23:1032–1051. https://doi.org/10.1175/1520-0450(1984)023%3c1032:DVORCA%3e2.0.CO;2
Article
Google Scholar
Nieves V, Willis JK, Patzert WC (2015) Recent hiatus caused by decadal shift in Indo-Pacific heating. Science 349:532–535. https://doi.org/10.1126/science.aaa4521
Article
Google Scholar
Pfeifroth U, Hollmann R, Ahrens B (2012) Cloud cover diurnal cycles in satellite data and regional climate model simulations. Meteorol Z 21:551–560. https://doi.org/10.1127/0941-2948/2012/0423
Article
Google Scholar
Risbey JS, Lewandowsky S, Langlais C et al (2014) Well-estimated global surface warming in climate projections selected for ENSO phase. Nat Clim Change 4:835–840. https://doi.org/10.1038/nclimate2310
Article
Google Scholar
Roehrig R, Bouniol D, Guichard F et al (2013) The present and future of the west african monsoon: a process-oriented assessment of CMIP5 simulations along the AMMA transect. J Clim 26:6471–6505. https://doi.org/10.1175/JCLI-D-12-00505.1
Article
Google Scholar
Roemmich D, Team AS (2009) Argo: the challenge of continuing 10 years of progress. Oceanography 22:46–55
Article
Google Scholar
Rutan DA, Kato S, Doelling DR et al (2015) CERES synoptic product: methodology and validation of surface radiant flux. J Atmos Ocean Technol 32:1121–1143. https://doi.org/10.1175/JTECH-D-14-00165.1
Article
Google Scholar
Santer BD, Bonfils C, Painter JF et al (2014) Volcanic contribution to decadal changes in tropospheric temperature. Nat Geosci 7:185–189. https://doi.org/10.1038/ngeo2098
Article
Google Scholar
Shell KM, Kiehl JT, Shields CA (2008) Using the radiative kernel technique to calculate climate feedbacks in NCAR’s community atmospheric model. J Clim 21:2269–2282. https://doi.org/10.1175/2007JCLI2044.1
Article
Google Scholar
Soden BJ, Broccoli AJ, Hemler RS (2004) On the use of cloud forcing to estimate cloud feedback. J Clim 17:3661–3665. https://doi.org/10.1175/1520-0442(2004)017%3c3661:OTUOCF%3e2.0.CO;2
Article
Google Scholar
Soden BJ, Held IM, Colman R et al (2008) Quantifying climate feedbacks using radiative kernels. J Clim 21:3504–3520. https://doi.org/10.1175/2007JCLI2110.1
Article
Google Scholar
Stephens GL (2005) Cloud feedbacks in the climate system: a critical review. J Clim 18:237–273. https://doi.org/10.1175/JCLI-3243.1
Article
Google Scholar
Stevens B (2005) Atmospheric moist convection. Annu Rev Earth Planet Sci 33:605–643
Article
Google Scholar
Stevens B, Giorgetta M, Esch M et al (2013) Atmospheric component of the MPI-M earth system model: ECHAM6. J Adv Model Earth Syst 5:146–172
Article
Google Scholar
Stocker T (2014) Climate change 2013: the physical science basis: working Group I contribution to the Fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press
Taylor PC (2012) Tropical outgoing longwave radiation and longwave cloud forcing diurnal cycles from CERES. J Atmospheric Sci 69:3652–3669
Article
Google Scholar
Taylor KE, Stouffer RJ, Meehl GA (2011) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. https://doi.org/10.1175/BAMS-D-11-00094.1
Article
Google Scholar
Tian B, Waliser DE, Fetzer EJ (2006) Modulation of the diurnal cycle of tropical deep convective clouds by the MJO. Geophys Res Lett 2006:33. https://doi.org/10.1029/2006GL027752
Trenberth KE (2015) Has there been a hiatus? Science 349:691–692. https://doi.org/10.1126/science.aac9225
Article
Google Scholar
Trenberth KE, Fasullo JT (2013) An apparent hiatus in global warming? Earths Future 1:19–32. https://doi.org/10.1002/2013EF000165
Article
Google Scholar
Vial J, Dufresne J-L, Bony S (2013) On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Clim Dyn 41:3339–3362. https://doi.org/10.1007/s00382-013-1725-9
Article
Google Scholar
Voldoire A, Sanchez-Gomez E, Salas y Mélia D et al (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121. https://doi.org/10.1007/s00382-011-1259-y
Article
Google Scholar
Von Salzen K, Scinocca JF, McFarlane NA et al (2013) The Canadian fourth generation atmospheric global climate model (CanAM4). Part I: representation of physical processes. Atmos Ocean 51:104–125
Article
Google Scholar
Walther A, Jeong J-H, Nikulin G et al (2013) Evaluation of the warm season diurnal cycle of precipitation over Sweden simulated by the Rossby Centre regional climate model RCA3. Atmos Res 119:131–139. https://doi.org/10.1016/j.atmosres.2011.10.012
Article
Google Scholar
Wang H, Su W (2013) Evaluating and understanding top of the atmosphere cloud radiative effects in Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) Coupled Model Intercomparison Project Phase 5 (CMIP5) models using satellite observations: Cloud radiative effects in CMIP5 modelS. J Geophys Res Atmos 118:683–699. https://doi.org/10.1029/2012JD018619
Article
Google Scholar
Watanabe M, Kamae Y, Yoshimori M et al (2013) Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus. Geophys Res Lett 40:3175–3179. https://doi.org/10.1002/grl.50541
Article
Google Scholar
Webb MJ, Lock AP, Bodas-Salcedo A et al (2015) The diurnal cycle of marine cloud feedback in climate models. Clim Dyn 44:1419–1436. https://doi.org/10.1007/s00382-014-2234-1
Article
Google Scholar
Wetherald RT, Manabe S (1988) Cloud feedback processes in a general circulation model. J Atmos Sci 45:1397–1416. https://doi.org/10.1175/1520-0469(1988)045%3c1397:CFPIAG%3e2.0.CO;2
Article
Google Scholar
Wielicki BA, Barkstrom BR, Harrison EF et al (1996) Clouds and the earth’s radiant energy system (CERES): an earth observing system experiment. Bull Am Meteorol Soc 77:853–868. https://doi.org/10.1175/1520-0477(1996)077%3c0853:CATERE%3e2.0.CO;2
Article
Google Scholar
Wood R, Bretherton CS (2006) On the relationship between stratiform low cloud cover and lower-tropospheric stability. J Clim 19:6425–6432. https://doi.org/10.1175/JCLI3988.1
Article
Google Scholar
Wood R, Bretherton CS, Hartmann DL (2002) Diurnal cycle of liquid water path over the subtropical and tropical oceans. Geophys Res Lett 29:7-1–7-4. https://doi.org/10.1029/2002GL015371
Article
Google Scholar
Xi B, Dong X, Minnis P, Khaiyer MM (2010) A 10 year climatology of cloud fraction and vertical distribution derived from both surface and GOES observations over the DOE ARM SPG site. J Geophys Res Atmos 2010:115
Yang G-Y, Slingo J (2001) The Diurnal cycle in the tropics. Mon Weather Rev 129:784–801. https://doi.org/10.1175/1520-0493(2001)129%3c0784:TDCITT%3e2.0.CO;2
Article
Google Scholar
Yin J, Porporato A (2017) Diurnal cloud cycle biases in climate models. Nat Commun 8:2269. https://doi.org/10.1038/s41467-017-02369-4
Article
Google Scholar
Yin J, Albertson JD, Rigby JR, Porporato A (2015) Land and atmospheric controls on initiation and intensity of moist convection: CAPE dynamics and LCL crossings. Water Resour Res 51:8476–8493. https://doi.org/10.1002/2015wr017286
Article
Google Scholar
Zelinka MD, Klein SA, Hartmann DL (2012a) Computing and partitioning cloud feedbacks using cloud property histograms. Part I: cloud radiative kernels. J Clim 25:3715–3735. https://doi.org/10.1175/jcli-d-11-00248.1
Article
Google Scholar
Zelinka MD, Klein SA, Hartmann DL (2012b) Computing and partitioning cloud feedbacks using cloud property histograms. Part II: attribution to changes in cloud amount, altitude, and optical depth. J Clim 25:3736–3754. https://doi.org/10.1175/jcli-d-11-00249.1
Article
Google Scholar
Zhang Y, Klein SA (2010) Mechanisms affecting the transition from shallow to deep convection over land: inferences from observations of the diurnal cycle collected at the ARM southern great plains site. J Atmos Sci 67:2943–2959. https://doi.org/10.1175/2010JAS3366.1
Article
Google Scholar
Zhang MH, Hack JJ, Kiehl JT, Cess RD (1994) Diagnostic study of climate feedback processes in atmospheric general circulation models. J Geophys Res Atmospheres 99:5525–5537. https://doi.org/10.1029/93JD03523
Article
Google Scholar
Zhang M, Bretherton CS, Blossey PN et al (2013) CGILS: results from the first phase of an international project to understand the physical mechanisms of low cloud feedbacks in single column models. J Adv Model Earth Syst 5:826–842. https://doi.org/10.1002/2013MS000246
Article
Google Scholar
Zhou C, Zelinka MD, Dessler AE, Yang P (2013) An analysis of the short-term cloud feedback using MODIS data. J Clim 26:4803–4815. https://doi.org/10.1175/JCLI-D-12-00547.1
Article
Google Scholar