Skip to main content
Log in

Change of El Niño and La Niña amplitude asymmetry around 1980

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Amplitude of El Niño and La Niña was significantly different during 1980–2016 but almost same during 1958–1979. The cause of this interdecadal change is investigated through an oceanic mixed-layer heat budget analysis. It was found that this interdecadal change was primarily attributed to the distinctive effects of nonlinear zonal temperature advection between the two periods. During 1980–2016 nonlinear zonal advection, working together with nonlinear meridional advection, contributes to the El Niño and La Niña amplitude asymmetry. During 1958–1979 the nonlinear zonal advection had an opposite effect. The difference in the nonlinear zonal advection between the two interdecadal periods was caused by distinctive longitudinal locations of El Niño centers. Maximum SST anomaly (SSTA) centers were confined near the coast of South America (east of 90° W) during the first period but appear near 110° W during the second period. Because of this difference, an anomalous eastward ocean surface current (caused by a positive thermocline depth anomaly during El Niño) would generate a negative (positive) nonlinear zonal advection before (after) 1980. The distinctive longitudinal locations of El Niño centers are possibly caused by the interdecadal changes of mean thermocline and high-frequency wind variability over the equatorial western-central Pacific. A hypothesis was put forth to understand distinctive initiation locations between El Niño and La Niña.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • An SI (2004) Interdecadal changes in the El Niño-La Niña asymmetry. Geophys Res Lett 31:L23210

    Google Scholar 

  • An SI, Jin FF (2004) Nonlinearity and asymmetry of ENSO. J Clim 17(14):2851–2865

    Google Scholar 

  • An SI, Hsieh WW, Jin FF (2005) A nonlinear analysis of the ENSO cycle and its interdecadal changes. J Clim 18:3229–3239

    Google Scholar 

  • Battisti DS, Hirst AC (1989) Interannual variability in a tropical atmosphere-ocean model: influence of the basic state, ocean geometry and nonlinearity. J Atmos Sci 46(12):1687–1712

    Google Scholar 

  • Behringer DW (2007) The Global Ocean Data Assimilation System (GODAS) at NCEP. In: Preprints 11th Symp. on integrated observing and assimilation systems for atmosphere, oceans, and land surface, San Antonio, TX, Amer Meteor Soc, 3.3

  • Bove MC, O’Brien JJ, Eisner JB et al (1998) Effect of El Niño on US Landfalling hurricanes, revisited. Bull Am Meteorol Soc 79(11):2477–2482

    Google Scholar 

  • Burgers G, Stephenson DB (1999) The “normality” of El Niño. Geophys Res Lett 26(8):1027–1030

    Google Scholar 

  • Cai W et al (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Change 4:111–116

    Google Scholar 

  • Cane MA, Zebiak SE (1985) A theory for El Niño and the Southern oscillation. Science 228(4703):1085–1087

    Google Scholar 

  • Capotondi A, Sardeshmukh PD, Ricciardulli L (2018) The nature of the stochastic wind forcing of ENSO. J Clim 31(19):8081–8099

    Google Scholar 

  • Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Weather Rev 136(136):2999–3017

    Google Scholar 

  • Carton JA, Chepurin G, Cao X et al (2000) A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: methodology. J Phys Oceanogr 30(2):294–309

    Google Scholar 

  • Chang P, Wang B, Li T, Ji L (1994) Interactions between the seasonal cycle and the Southern Oscillation: frequency entrainment and chaos in an intermediate coupled ocean atmosphere model. Geophys Res Lett 21:2817–2820

    Google Scholar 

  • Changnon SA (1999) Impacts of 1997-98 El Niño Generated Weather in the United States. Bull Am Meteorol Soc 80(9):1819–1827

    Google Scholar 

  • Chen L, Li T, Yu Y (2015) Causes of strengthening and weakening of enso amplitude under global warming in four CMIP5 models. J Clim 28:3250–3274

    Google Scholar 

  • Chen L, Li T, Behera SK, Doi T (2016a) Distinctive precursory air-sea signals between regular and super El Niños. Adv Atmos Sci 33:996–1004

    Google Scholar 

  • Chen L, Yu Y, Zheng W (2016b) Improved ENSO simulation from climate system model FGOALS-g1.0 to FGOALS-g2. Clim Dyn 47:2617–2634

    Google Scholar 

  • Chen M, Li T, Shen X et al (2016c) Relative roles of dynamic and thermodynamic processes in causing evolution asymmetry between El Niño and La Niña. J Clim 29(6):2201–2220

    Google Scholar 

  • Chen L, Li T, Yu Y, Behera SK (2017a) A possible explanation for the divergent projection of ENSO amplitude change under global warming. Clim Dyn 49:3799–3811

    Google Scholar 

  • Chen L, Li T, Wang B, Wang L (2017b) Formation mechanism for 2015/16 super El Niño. Sci Rep 7:2975

    Google Scholar 

  • Chen L, Zheng W, Braconnot P (2019) Towards understanding the suppressed ENSO activity during mid-Holocene in PMIP2 and PMIP3 simulations. Clim Dyn 53(1–2):1095–1110

    Google Scholar 

  • Choi J, An SI, Dewitte B, Hsieh WW (2009) Interactive feedback between the tropical Pacific decadal oscillation and ENSO in a coupled general circulation model. J Clim 22:6597–6611

    Google Scholar 

  • Chung PH, Li T (2013) Interdecadal relationship between the mean state and El Niño types. J Clim 26(2):361–379

    Google Scholar 

  • Collins M et al (2010) The impact of global warming on the tropical Pacific and El Niño. Nat Geosci 3:391–397

    Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD (2006) Feasibility of a 100-year reanalysis using only surface pressure data. Bull Am Meteorol Soc 87(2):175–190

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Google Scholar 

  • Dong B, Sutton RT, Scaife AA (2006) Multidecadal modulation of El Niño-Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys Res Lett 33:L08705

    Google Scholar 

  • Hong CC, Li T, Kug JS (2008) Asymmetry of the Indian Ocean dipole. Part I: observational analysis. J Clim 21(18):4834–4848

    Google Scholar 

  • Hu ZZ, Kumar A, Jha B et al (2012) An analysis of warm pool and cold tongue El Niños: air-sea coupling processes, global influences, and recent trends. Clim Dyn 38(9–10):2017–2035

    Google Scholar 

  • Huang R, Wu Y (1989) The influence of ENSO on the summer climate change in China and its mechanism. Adv Atmos Sci 6(1):21–32

    Google Scholar 

  • Huang B, Xue Y, Zhang D et al (2010) The NCEP GODAS ocean analysis of the tropical Pacific mixed layer heat budget on seasonal to interannual time scales. J Clim 23(18):4901–4925

    Google Scholar 

  • Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J Atmos Sci 54(7):811–829

    Google Scholar 

  • Jin FF, An SI, Timmermann A et al (2003) Strong El Niño events and nonlinear dynamical heating. Geophys Res Lett 30(3):20-1–20-4

    Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J et al (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83(11):1631–1643

    Google Scholar 

  • Kang IS, No HH, Kucharski F (2014) ENSO amplitude modulation associated with the mean SST changes in the tropical central Pacific induced by Atlantic multidecadal oscillation. J Clim 27:7911–7920

    Google Scholar 

  • Kirtman BP, Schopf PS (1998) Decadal variability in ENSO predictability and prediction. J Clim 11(11):2804–2822

    Google Scholar 

  • Kumar A, Hu ZZ (2012) Uncertainty in the ocean-atmosphere feedbacks associated with ENSO in the reanalysis products. Clim Dyn 39(3–4):575–588

    Google Scholar 

  • Li T (1997) Phase transition of the El Niño-Southern Oscillation: a Stationary SST Mode. J Atmos Sci 54(54):2872–2887

    Google Scholar 

  • Li T, Hsu PC (2017) ENSO dynamics. Fundamentals of tropical climate dynamics. Springer International Publishing, Cham, p 236

    Google Scholar 

  • Li T, Zhang Y, Lu E, Wang D (2002) Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: an OGCM diagnosis. Geophys Res Lett 29:25-21–25-24

    Google Scholar 

  • Li T, Wang B, Wu B et al (2017) Theories on formation of an anomalous anticyclone in Western North Pacific during El Niño: a review. J Meteorol Res 31(6):987–1006

    Google Scholar 

  • Li X, Hu ZZ, Huang B (2019) Contributions of atmosphere-ocean interaction and low-frequency variation to intensity of strong El Niño events since 1979. J Clim 32(5):1381–1394

    Google Scholar 

  • Mcphaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314(5806):1740–1745

    Google Scholar 

  • Neelin JD, Battisti DS, Hirst AC et al (1998) ENSO theory. J Geophys Res Oceans 103(C7):14261–14290

    Google Scholar 

  • Okumura YM, Deser C (2010) Asymmetry in the duration of El Niño and La Niña. J Clim 23(21):5826–5843

    Google Scholar 

  • Okumura YM, Sun T, Wu X (2017) Asymmetric modulation of El Niño and La Niña and the linkage to tropical Pacific decadal variability. J Clim 30:4705–4733

    Google Scholar 

  • Philander SG (1990) El Niño, La Niña, and the Southern Oscillation. Academic Press, London, p 289

    Google Scholar 

  • Philander SGH, Yamagata T, Pacanowski RC (1984) Unstable air-sea interactions in the tropics. J Atmos Sci 41(4):604–613

    Google Scholar 

  • Picaut J, Masia F, Penhoat YD (1997) An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science 277(5326):663–666

    Google Scholar 

  • Rasmusson EM, Carpenter TH (1982) Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Niño. Mon Weather Rev 110(5):354–384

    Google Scholar 

  • Rodgers KB, Friederichs P, Latif M (2004) Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J Clim 17:3761–3774

    Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern oscillation. Mon Weather Rev 115:1606–1626

    Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC et al (2008) Improvements to NOAAs historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296

    Google Scholar 

  • Su JZ, Zhang RH, Rong XY et al (2010) Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J Clim 23(3):605–617

    Google Scholar 

  • Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45(21):3283–3287

    Google Scholar 

  • Uppala SM, Kallberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012

    Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109(4):784–812

    Google Scholar 

  • Wang B, An SI (2001) Why the properties of El Niño changed during the late 1970s. Geophys Res Lett 28(19):3709–3712

    Google Scholar 

  • Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect east Asian climate? J Clim 13(9):1517–1536

    Google Scholar 

  • Wang B, Wu R, Li T (2003) Atmosphere–warm ocean interaction and its impacts on Asian-Australian Monsoon variation. J Clim 16:1195–1211

    Google Scholar 

  • Weisberg RH, Wang C (1997) A Western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys Res Lett 24(7):779–782

    Google Scholar 

  • White GH (1980) Skewness, kurtosis and extreme values of northern hemisphere geopotential heights. Mon Weather Rev 108(9):1446–1455

    Google Scholar 

  • Wu B, Li T, Zhou TJ (2010) Asymmetry of atmospheric circulation anomalies over the western North Pacific between El Niño and La Niña. J Clim 23(18):4807–4822

    Google Scholar 

  • Wu B, Zhou TJ, Li T (2017) Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: maintenance mechanisms. J Clim 30:9621–9635

    Google Scholar 

  • Xiang B, Wang B, Li T (2013) A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Clim Dyn 41(2):327–340

    Google Scholar 

  • Xue Y, Smith TM, Reynolds RW (2003) Interdecadal changes of 30-Yr SST normals during 1871–2000. J Clim 16(10):1601–1612

    Google Scholar 

  • Yeh SW, Kirtman BP (2004) Tropical Pacific decadal variability and ENSO amplitude modulation in a CGCM. J Geophys Res 109:C11009

    Google Scholar 

  • Yeo SR, Yeh SW, Kim KY et al (2016) The role of low frequency variation in the manifestation of warming trend and ENSO amplitude. Clim Dyn 49(4):1197–1213

    Google Scholar 

  • Zhu ZW, Li T (2016) A new paradigm for continental US summer rainfall variability: Asia-North America teleconnection. J Clim 29:7313–7327

    Google Scholar 

  • Zhu ZW, Li T (2018) Amplified contiguous United States summer rainfall variability induced by East Asian monsoon interdecadal change. Clim Dyn 50(9–10):3523–3536

    Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC Grants 41630423, NSF Grant AGS-15-65653, NOAA Grant NA18OAR4310298, and Jiangsu NSF grant BK20180811. This is SOEST contribution number 10864, IPRC contribution number 1416, and ESMC contribution number 291.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Li, T. & Chen, M. Change of El Niño and La Niña amplitude asymmetry around 1980. Clim Dyn 54, 1351–1366 (2020). https://doi.org/10.1007/s00382-019-05062-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-019-05062-y

Keywords

Navigation