The dynamics of cyclones in the twentyfirst century: the Eastern Mediterranean as an example

Abstract

The Mediterranean region is projected to be significantly affected by climate change through warming and drying. The Eastern Mediterranean (EM) is particularly vulnerable since the bulk of the precipitation in the region is associated with a specific circulation pattern, known as Cyprus Low (CL). Here, we study the influence of increased greenhouse gases on the average properties and dynamics of CLs, using a regional semi-objective synoptic classification. The classification is applied to NCEP/NCAR reanalysis data for the present day (1986–2005) as well as to eight CMIP5 models for the present day and for the end of the century (2081–2100; RCP8.5). This is complemented by a dynamical systems analysis, which is used to investigate changes in the dynamics and intrinsic predictability of the CLs. Finally, a statistical downscaling algorithm, based on past analogues, is applied to eighteen rain stations over Israel, and is used to project precipitation changes associated with CLs. Significant changes in CL properties are found under climate change. The models project an increase in CL meridional pressure gradient (0.5–1.5 hPa/1000 km), which results primarily from a strong increase in the pressure over the southern part of the study region. Our results further point to a decrease in CL frequency (− 35%, as already noted in an earlier study) and persistence (− 8%). Furthermore, the daily precipitation associated with CL occurrences over Israel for 2081–2100 is projected to significantly reduce (− 26%). The projected drying over the EM can be partitioned between a decrease in CL frequency (~ 137 mm year−1) and a reduction in CL-driven daily precipitation (~ 67 mm year−1). The models further indicate that CLs will be less predictable in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Alpert P, Reisin T (1986) An early winter polar air mass penetration to the Eastern Mediterranean. Mon Weather Rev 114:1411–1418

    Google Scholar 

  2. Alpert P, Ziv B (1989) The Sharav cyclone—observations and some theoretical considerations. J Geophys Res 94:18495–18514

    Google Scholar 

  3. Alpert P, Neeman BU, Shay-El Y (1990) Climatological analysis of Mediterranean cyclones using ECMWF data. Tellus 42A:65–77

    Google Scholar 

  4. Alpert P, Stein U, Tsidulko M (1995) Role of sea-fluxes and topography in Eastern Mediterranean cyclogenesis. Glob Atmos Ocean Syst 3:55–79

    Google Scholar 

  5. Alpert P, Osetinsky I, Ziv B, Shafir H (2004a) Semi-objective classification for daily synoptic systems: application to the Eastern Mediterranean climate change. Int J Climatol 24:1001–1011

    Google Scholar 

  6. Alpert P, Osetinsky I, Ziv B, Shafir H (2004b) A new seasons’ definition based on classified daily synoptic systems: an example for the Eastern Mediterranean. Int J Climatol 24:1013–1021. https://doi.org/10.1002/joc.1037

    Article  Google Scholar 

  7. Beersma JJ, Buishand TA (2003) Multi-site simulation of daily precipitation and temperature conditional on the atmospheric circulation. Clim Res 25:121–133

    Google Scholar 

  8. Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19:3518–3543

    Google Scholar 

  9. Carnell RE, Senior CA (1998) Changes in mid-latitude variability due to increasing greenhouse gases and sulphate aerosols. Clim Dynam 14:369–383

    Google Scholar 

  10. Dayan U, Tubi A, Levy I (2012) On the importance of synoptic classification methods with respect to environmental phenomena. Int J Climatol 32:681–694

    Google Scholar 

  11. Drobinski P, Alpert P, Cavicchia L, Flaounas E, Hochman A, Kotroni V (2016) Strong winds. In: Sabrie ML, Gilbert-Brunet E, Mourier T (eds) The Mediterranean region under climate change—a scientific update. Institut de Recherche pour le Développement, Marseille, pp 115–122

  12. Egger J, Alpert P, Tafferner A, Ziv B (1995) Numerical experiments on the genesis of Sharav cyclones: idealized simulations. Tellus 47A:162–174

    Google Scholar 

  13. Eichler TP, Gaggini N, Pan Z (2013) Impacts of global warming on Northern Hemisphere winter storm tracks in the CMIP5 model suite. J Geophys Res Atmos 118(10):3919–3932. https://doi.org/10.1002/jgrd.50286

    Article  Google Scholar 

  14. Enzel Y, Bookman R, Sharon D, Gvirtzman H, Dayan U, Ziv B, Stein M (2003) Late Holocene climates of the Near East deduced from Dead Sea level variations and modem regional winter rainfall. Quat Res 60(3):263–273. https://doi.org/10.1016/j.yqres.2003.07.011

    Article  Google Scholar 

  15. Faranda D, Messori G, Yiou P (2017a) Dynamical proxies of North Atlantic predictability and extremes. Sci Rep 7:412782017b. https://doi.org/10.1038/srep4127

    Article  Google Scholar 

  16. Faranda D, Messori G, Alvarez-Castro MC, Yiou P (2017b) Dynamical properties and extremes of Northern Hemisphere climate fields over the past 60 years. Nonlinear Processes Geophys 24(4):713–725

    Google Scholar 

  17. Faranda D, Messori G, Vannistem S (2019a) Attractor dimension of time-averaged climate observables: insights from a low-order ocean-atmosphere model. Tellus A. https://doi.org/10.1080/16000870.2018.1554413

    Article  Google Scholar 

  18. Faranda D, Alvarez-Castro MC, Messori G, Rodrigues D, Yiou P (2019b) The hammam effect or how a warm ocean enhances large scale atmospheric predictability. Nat Commun 10(1):1316

    Google Scholar 

  19. Flaounas E, Raveh-Rubin S, Wernli H, Drobinski P, Bastin S (2015) The dynamical structure of intense Mediterranean cyclones. Clim Dyn 44:2411–2427

    Google Scholar 

  20. Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modeling to impacts studies: recent advances in downscaling techniques for hydrological modeling. Int J Climatol 27:1547–1578. https://doi.org/10.1002/joc.1556

    Article  Google Scholar 

  21. Freitas ACM, Freitas JM, Todd M (2010) Hitting time statistics and extreme value theory. Probab Theory Relat Fields 147:675–710

    Google Scholar 

  22. Freitas ACM, Freitas JM, Vaienti S (2017) Extreme Value Laws for non-stationary processes generated by sequential and random dynamical systems. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 53(3):1341–1370

    Google Scholar 

  23. Gagniuc PA (2017) Markov chains: from theory to implementation and experimentation. John Wiley, Hoboken

    Google Scholar 

  24. Geng Q, Sugi M (2003) Possible change of extratropical cyclone activity due to enhanced greenhouse gases and sulfate aerosols—study with a high-resolution AGCM. J Clim 16:2262–2274

    Google Scholar 

  25. Gillet NP, Fyfe JC (2013) Annular mode changes in the CMIP5 simulations. Geophys Res Lett 40:1189–1193. https://doi.org/10.1002/grl.50249

    Article  Google Scholar 

  26. Giorgi F (2006) Climate change hot spots. Geophys Res Lett 33:L08

    Google Scholar 

  27. González-Alemán JJ, Pascale S, Gutierrez-Fernandez J, Murakami H, Gaertner MA, Vecchi GA (2019) Potential increase in hazard from Mediterranean hurricane activity with global warming. Geophys Res Lett 46(3):1754–1764

    Google Scholar 

  28. Hochman A, Harpaz T, Saaroni H, Alpert P (2018a) Synoptic classification in 21st century CMIP5 predictions over the Eastern Mediterranean with focus on cyclones. Int J Climatol 38:1476–1483. https://doi.org/10.1002/joc.5260

    Article  Google Scholar 

  29. Hochman A, Harpaz T, Saaroni H, Alpert P (2018b) The seasons’ length in 21st century CMIP5 projections over the Eastern Mediterranean. Int J Climatol 38(6):2627–2637. https://doi.org/10.1002/joc.5448

    Article  Google Scholar 

  30. Hochman A, Alpert P, Harpaz T, Saaroni H, Messori G (2019a) A new dynamical systems perspective on atmospheric predictability: Eastern Mediterranean weather regimes as a case study. Sci Adv. https://doi.org/10.1126/sciadv.aau0936

    Article  Google Scholar 

  31. Hochman A, Kunin P, Alpert P, Harpaz T, Saaroni H, Rostkier-Edelstein D (2019b) Weather regimes and analogues downscaling of seasonal precipitation for the 21st century; A case study over Israel. Int J Climatol. https://doi.org/10.1002/joc.6318(in press)

    Article  Google Scholar 

  32. Hoerling MP, Hurrel JW, Xu T (2001) Tropical origins for recent North Atlantic climate change. Science 292:90–92. https://doi.org/10.1126/science.1058582

    Article  Google Scholar 

  33. IPCC (2013) Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [Stocker T.F. Qin D. Plattner G. K. Tignor M. Allen S.K. Boschung J. Nauels A. Xia Y. Bex V. and Midgley P.M. (eds)]. Cambridge University Press, Cambridge, and New York, 1535 pp. https://doi.org/10.1017/cbo9781107415324

    Google Scholar 

  34. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Google Scholar 

  35. Karas S, Zangvil A (1999) A preliminary analysis of disturbance tracks over the Mediterranean basin. Theor Appl Climatol 64:239–248

    Google Scholar 

  36. Karpechko AY (2010) Uncertainties in future climate attributable to uncertainties in future annular mode trend. Geophys Res Lett 37:L20702. https://doi.org/10.1029/2010GL044717

    Article  Google Scholar 

  37. Lanzante JR, Dixon KW, Nath MJ, Whitlock CE, Adams-Smith D (2018) Some pitfalls in statistical downscaling of future climate. Bull Am Meteorol Soc 99:791–803. https://doi.org/10.1175/BAMS-D-17-0046.1

    Article  Google Scholar 

  38. Laprise R et al (2008) Challenging some tenets of regional climate modelling. Meteorol Atmos Phys 100:3–22

    Google Scholar 

  39. Leckebusch GC, Koffi B, Ulbrich U, Pinto JG, Spangehl T, Zacharias S (2006) Analysis of frequency and intensity of winter storm events in Europe on synoptic and regional scales from a multi-model perspective. Clim Res 31:59–74

    Google Scholar 

  40. Lelieveld J, Proestos Y, Hadjinicolaou P, Tanarhte M, Tyrlis E, Zittis G (2016) Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Clim Change 137:245–260. https://doi.org/10.1007/s10584-016-1665-6

    Article  Google Scholar 

  41. Lionello P (ed) (2012) The climate of the Mediterranean region, from the past to the future. Elsevier, Amsterdam, p 502

    Google Scholar 

  42. Lionello P, Giorgi F (2007) Winter precipitation and cyclones in the mediterranean region: future climate scenarios in a regional simulation. Adv Geosci 12:153–158

    Google Scholar 

  43. Lionello P, Dalan F, Elvini E (2002) Cyclones in the Mediterranean region: the present and the doubled CO2 climate scenarios. Clim Res 22:147–159

    Google Scholar 

  44. Lionello P, Malanbotte-Rizzoli P, Boscolo R (2006) Mediterranean climate variability. Developments in earth and environmental sciences, vol 4. Elsevier, Amsterdam, pp 325–372

    Google Scholar 

  45. Lionello P, Gacic AF, Planton M, Trigo SR, Ulbrich U (2014) The climate of the Mediterranean region: research progress and climate change impacts. Reg Environ Change 14:1679–1684

    Google Scholar 

  46. Lionello P, Trigo IF, Gil V, Liberato ML, Nissen KM, Pinto JG, Raible CC, Reale M, Tanzarella A, Trigo RM, Ulbrich S (2016) Objective climatology of cyclones in the Mediterranean region: a consensus view among methods with different system identification and tracking criteria. Tellus A 68:1–18

    Google Scholar 

  47. Lorenz EN (1963) Deterministic non periodic flow. J Atmos Sci 20:130–141

    Google Scholar 

  48. Lorenz EN (1969) Atmospheric predictability as revealed by naturally occurring analogues. J Atmos Sci 26:636–646. https://doi.org/10.1175/1520-0469(1969)26%3c636:APARBN%3e2.0.CO;2

    Article  Google Scholar 

  49. Lorenz EN (1980) Attractor sets and quasi-geostrophic equilibrium. J Atmos Sci 37:1685–1699

    Google Scholar 

  50. Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34:L06805. https://doi.org/10.1029/2006GL028443

    Article  Google Scholar 

  51. Lucarini V, Faranda D, Wouters J (2012) Universal behavior of extreme value statistics for selected observables of dynamical systems. J Stat Phys 147:63–73

    Google Scholar 

  52. Lucarini V, Faranda D, Freitas ACM, Freitas JM, Holland M, Kuna T, Nicol M, Todd M, Vaienti S (2016) Extremes and Recurrence in dynamical systems. Pure and applied mathematics: a wiley series of texts, monographs and tracts. Wiley, Hoboken, pp 126–172

    Google Scholar 

  53. Maraun D, Widmann M (2018) Statistical downscaling and bias correction for climate research. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781107588783

    Book  Google Scholar 

  54. Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themessl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change. Recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48:3003

    Google Scholar 

  55. Messori G, Caballero R, Faranda D (2017) A dynamical systems approach to studying mid-latitude weather extremes. Geophys Res Lett 44(7):3346–3354

    Google Scholar 

  56. Nissen KM, Leckebusch GC, Pinto JG, Renggli D, Ulbrich S, Ulbrich U (2010) Cyclones causing wind storms in the Mediterranean: characteristics, trends and links to large-scale patterns. Nat Hazards Earth Syst Sci 10:1379–1391

    Google Scholar 

  57. Nissen KM, Leckebusch GC, Pinto JG, Ulbrich U (2014) Mediterranean cyclones and windstorms in a changing climate. Reg Environ Change 14:1873–1890

    Google Scholar 

  58. Peleg N, Bartov M, Morin E (2015) CMIP5-predicted climate shifts over the East Mediterranean: implications for the transition region between Mediterranean and semi-arid climates. Int J Climatol 35(8):2144–2153

    Google Scholar 

  59. Pinto JG, Spangehl T, Ulbrich U, Speth P (2006) Assessment of winter cyclone activity in a transient ECHAM4-OPYC3 GHG experiment. Meteorol Z 15:279–291

    Google Scholar 

  60. Pinto JG, Ulbrich U, Leckebusch GC, Spangehl T, Reyers M, Zacharias S (2007) Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPIOM1 GCM. Clim Dyn 29:195–210

    Google Scholar 

  61. Raible CC, Saaroni H, Ziv B, Wild M (2010) Winter cyclonic activity over the Mediterranean Basin under future climate, based on the ECHAM5 GCM. Clim Dyn 35:473–488

    Google Scholar 

  62. Rodrigues D, Alvarez-Castro MC, Messori G, Yiou P, Robin Y, Faranda D (2018) Dynamical properties of the North Atlantic atmospheric circulation in the past 150 years in CMIP5 models and the 20CRv2c reanalysis. J Clim 31:6097–6111. https://doi.org/10.1175/JCLI-D-17-0176.1

    Article  Google Scholar 

  63. Rostkier-Edelstein D, Kunin P, Hopson TM, Yubao L, Givati A (2016) Statistical downscaling of seasonal precipitation in Israel. Int J Climatol 36:590–606

    Google Scholar 

  64. Saaroni H, Halfon N, Ziv B, Alpert P, Kutiel H (2010a) Links between the rainfall regime in Israel and location and intensity of cyprus lows. Int J Climatol 30:1014–1025

    Google Scholar 

  65. Saaroni H, Ziv B, Osetinsky I, Alpert P (2010b) Factors governing the inter-annual variation and the long-term trend of the 850-hPa temperature over Israel. Q J R Meteorol Soc 136:305–318

    Google Scholar 

  66. Salvi K, Ghosh S, Ganguly AR (2016) Credibility of statistical downscaling under nonstationary climate. Clim Dyn 46:1991–2023. https://doi.org/10.1007/s00382-015-2688-9

    Article  Google Scholar 

  67. Samuels R, Hochman A, Baharad A, Givati A, Levi Y, Yosef Y, Saaroni H, Ziv B, Harpaz T, Alpert P (2017) Evaluation and projection of extreme precipitation indices in the Eastern Mediterranean based on CMIP5 multi model ensemble. Int J Climatol 38(5):2280–2297. https://doi.org/10.1002/joc.5334

    Article  Google Scholar 

  68. Scher S, Messori G (2018) Predicting weather forecast uncertainty with machine learning. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3410

    Article  Google Scholar 

  69. Scher S, Messori G (2019) How global warming changes the difficulty of synoptic weather forecasting. Geophys Res Lett 46(5):2931–2939

    Google Scholar 

  70. Schultz DM, Bosart LF, Colle BA, Davies HC, Dearden C, Keyser D, Martius O, Roebber PJ, Steenburgh WJ, Volkert H, Winters AC (2019) Extratropical cyclones: a century of research on meteorology’s centerpiece. Meteorol Monogr 59:16.1–16.56. https://doi.org/10.1175/amsmonographs-d-18-0015.1

    Article  Google Scholar 

  71. Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1(1):21–24. https://doi.org/10.1038/ngeo.2007.38

    Article  Google Scholar 

  72. Shay-El Y, Alpert P (1991) A diagnostic study of winter adiabatic heating in the Mediterranean in relation to cyclones. Q J R Meteorol Soc 117:715–747

    Google Scholar 

  73. Sillman J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013) Climate extreme indices in the CMIP5 multi-model ensemble: part 1. Model evaluation in the present climate. J Geophys Res 118:1716–1733

    Google Scholar 

  74. Stein U, Alpert P (1991) Inclusion of sea moisture flux in the Anthes-Kuo cumulus parametrization. Contrib Atmos Phys 64:231–243

    Google Scholar 

  75. Süveges M (2007) Likelihood estimation of the extremal index. Extremes 10(1–2):41–55

    Google Scholar 

  76. Tamarin-Brodsky T, Kaspi Y (2017) Enhanced poleward propagation of storms under climate change. Nat Geosci. https://doi.org/10.1038/s41561-017-0001-8

    Article  Google Scholar 

  77. Taylor KER, Stouffer J, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Google Scholar 

  78. Trigo IF, Davies TD, Bigg GR (1999) Objective climatology of cyclones in the Mediterranean region. J Clim 12:1685–1696

    Google Scholar 

  79. Tsidulko M, Krichak SO, Alpert P, Kakaliagou O, Kallos G, Papadopoulos A (2002) Numerical study of a very intensive eastern Mediterranean dust storm, 13–16 March 1998. J Geophys Res 107(D21):4581. https://doi.org/10.1029/2001JD001168

    Article  Google Scholar 

  80. Ulbrich U, Leckebusch GC, Pinto JG (2009) Extra-tropical cyclones in the present and future climate: a review. Theor Appl Climatol 96:117–131. https://doi.org/10.1007/s00704-008-0083-8

    Article  Google Scholar 

  81. Van-Vuuren DP, Edmonds JA, Kainuma M, Riahi K, Weyant J (2011) A special issue on the RCPs. Clim Change 109:1–4. https://doi.org/10.1007/s10584-011-0157-y

    Article  Google Scholar 

  82. Velasquez JA, Troin M, Caya D, Brissette F (2015) Evaluating the time-invariance hypothesis of climate model bias correction: implications for hydrological impact studies. J Hydrometeorol 16:2013–2026. https://doi.org/10.1175/JHM-D-14-0159.1

    Article  Google Scholar 

  83. Warner TT (2011) Quality assurance in atmospheric modeling. Bull Am Meteorol Soc 92:1601–1610. https://doi.org/10.1175/BAMS-D-11-00054

    Article  Google Scholar 

  84. Wilks DS (2011) Statistical methods in the atmospheric sciences. Academic Press, San Diego

    Google Scholar 

  85. Yates DS, Gangopadhyay BR, Strzepek K (2003) A technique for generating regional climate scenarios using a nearest neighbor algorithm. Water Resour Res 39(7):1199. https://doi.org/10.1029/2002WR001769

    Article  Google Scholar 

  86. Young K (1994) A multivariate chain model for simulating climatic parameters from daily data. J Appl Meteorol 33(6):661–671

    Google Scholar 

  87. Zangvil A, Karas S, Sasson A (2003) Connection between Eastern Mediterranean seasonal mean 500 hPa height and sea-level pressure patterns and the spatial rainfall distribution over Israel. Int J Climatol 23:1567–1576

    Google Scholar 

  88. Zappa G, Hawcroft MK, Shaffrey L, Back E, Brayshaw D (2015) Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models. Clim Dyn 45:1727–1738. https://doi.org/10.1007/s00382-014-2426-8

    Article  Google Scholar 

  89. Ziv B, Harpaz T, Saaroni H (2015) A new methodology for identifying daughter cyclogenesis—application for the Mediterranean Basin. Int J Climatol 35(13):3847–3861

    Google Scholar 

  90. Zorita E, von Storch H (1999) The analog method—a simple statistical downscaling technique: comparison with more complicated methods. J Clim 12:2474–2489

    Google Scholar 

Download references

Acknowledgements

We thank Tel-Aviv University’s President and the Mintz foundation. This study was also partially supported by cooperation within the international virtual institute DESERVE (Dead Sea Research Venue), funded by the German Helmholtz Association, the Israel Science Foundation (ISF Grant no. 1123/17) and the Water Authority of Israel. G. Messori was partly supported by a grant from the Department of Meteorology of Stockholm University and by the Swedish Research Council Vetenskapsrådet, under Grant no. 2016-03724. This paper is a contribution to the Hydrological Cycle in the Mediterranean Experiment (HyMeX) community.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Assaf Hochman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 292 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hochman, A., Alpert, P., Kunin, P. et al. The dynamics of cyclones in the twentyfirst century: the Eastern Mediterranean as an example. Clim Dyn 54, 561–574 (2020). https://doi.org/10.1007/s00382-019-05017-3

Download citation

Keywords

  • Cyprus low
  • Cyclone predictability
  • Climate change
  • Cyclone dynamics
  • Synoptic classification
  • Dynamical systems
  • Statistical downscaling
  • Daily precipitation