Skip to main content

Advertisement

Log in

Thermodynamic and dynamic effects of increased moisture sources over the Tropical Indian Ocean in recent decades

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In the present work, the mechanisms for the changes in moisture sources (evaporation minus precipitation; EmP) during boreal summer (May–September) are explored over the tropical Indian Ocean during 1979–2016. We apply a moisture budget analysis to quantify the thermodynamic and dynamic effects. Our results show that the EmP in the tropical central-eastern and southwestern Indian Oceans experienced significant increasing trends during boreal summer. The increased EmP in the tropical central-eastern Indian Ocean is due to the enhanced dynamic divergence (account for approximately 51%), while a stronger dynamic advection contributes more moisture supply to the southwestern Indian Ocean (account for approximately 34%). We find that during recent decades, the enhanced east–west thermal gradient in the Pacific strengthens the Walker Circulation, which leads to a westward shift in convection over the Indian Ocean warm pool, resulting in weakened convection and ascent over the tropical central-eastern Indian Ocean. The weakened convection leads to an anomalous low-level atmospheric divergent circulation, which intensifies the dynamic divergence contributing to the enhanced EmP over the tropical central-eastern Indian Ocean. Additionally, the warming climate during recent decades also increases the land–sea thermal contrast in the vicinity of the Indian Ocean, which enhances the southeastern wind in the low-level troposphere and leads to an enhanced EmP over the southwestern Indian Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Annamalai H, Xie S, McCreary J, Murtugudde R (2005) Impact of Indian Ocean sea surface temperature on developing El Niño. J Clim 18:302–319

    Google Scholar 

  • Annamalai H, Hamilton K, Sperber KR (2007) The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J Clim 18:1071–1092

    Google Scholar 

  • Annamalai H, Hafner J, Sooraj KP et al (2013) Global warming shifts the monsoon circulation, drying South Asia. J Clim 26(9):2701–2718

    Google Scholar 

  • Ashok K, Guan Z, Yamagata T (2001) Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys Res Lett 28(23):4499–4502

    Google Scholar 

  • Bader J, Latif M (2003) The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation. Geophysi Res Lett 30

  • Bader J, Latif M (2005) North Atlantic Oscillation response to anomalous Indian Ocean SST in a coupled GCM. J Clim 18:5382–5389

    Google Scholar 

  • Bayr T, Dommenget D, Martin T et al (2014) The eastward shift of the Walker Circulation in response to global warming and its relationship to ENSO variability. Clim Dyn 43(9–10):2747–2763

    Google Scholar 

  • Bengtsson L (2010) The global atmospheric water cycle. Environ Res Lett 5:025202

    Google Scholar 

  • Bengtsson L, Hodges KI (2011) On the evaluation of temperature trends in the tropical troposphere. Clim Dyn 36(3–4):419–430

    Google Scholar 

  • Berrisford P, Kållberg P, Kobayashi S et al (2011) Atmospheric conservation properties in ERA-Interim. Q J R Meteorol Soc 137(659):1381–1399

    Google Scholar 

  • Bollasina MA, Ming Y, Ramaswamy V (2011) Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334:502–505

    Google Scholar 

  • Bosilovich MG et al (2015) MERRA‐2: Initial evaluation of the climate. NASA Technical Report series on global modeling and data assimilation, NASA/TM‐2015‐104606, NASA, vol 39, 136 p

  • Cassou C (2008) Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic Oscillation. Nature 455:523

    Google Scholar 

  • Chang EKM, Lee S, Swanson KL (2002) Storm track dynamics. J. Clim 15:2163–2183

    Google Scholar 

  • Chen G, Norris J, Neelin JD et al (2019) Thermodynamic and dynamic mechanisms for hydrological cycle intensification over the full probability distribution of precipitation events. J Atmos Sci 76(2):497–516

    Google Scholar 

  • Chou C (2003) Land–sea heating contrast in an idealized Asian summer monsoon. Clim Dyn 21:11–25

    Google Scholar 

  • Chung CE, Ramanathan V (2006) Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. J Clim 19:2036–2045

    Google Scholar 

  • Cook KH (2008) Climate science: the mysteries of Sahel droughts. Nat Geosci 1:647

    Google Scholar 

  • Dee DP, Uppala S (2009) Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Qu J R Meteorol Soc 135(644):1830–1841

    Google Scholar 

  • Dee Dick P et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Qu J R Meteorol Soc 137(656):553–597

    Google Scholar 

  • Deser C, Phillips AS, Hurrell JW (2004) Pacific interdecadal climate variability: linkages between the tropics and the North Pacific during boreal winter since 1900. J Clim 17(16):3109–3124

    Google Scholar 

  • Du Y, Xie SP (2008) Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophys Res Lett 35:L08712

  • Ebita A, Kobayashi S, Ota Y, Moriya M, Kumabe R, Onogi K et al (2011) The Japanese 55-year Reanalysis “JRA-55”: an interim report. Sci Online Lett Atmos Sola 7(1):149–152

    Google Scholar 

  • England MH, Mcgregor S, Spence P, Meehl GA, Timmermann A, Cai W, Santoso A (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4(3):222–227

    Google Scholar 

  • Findlater J (1969) A major low-level air current near the Indian Ocean during the northern summer. Q J Meterol Soc 95:362–380

    Google Scholar 

  • Funk C, Dettinger MD, Michaelsen JC et al (2008) Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proc Natl Acad Sci 105(32):11081–11086

    Google Scholar 

  • Giannini A, Saravanan R, Chang P (2003) Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 302:1027–1030

    Google Scholar 

  • Gong DY, Ho CH (2002) Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophys Res Lett 29:78-71–78-74

    Google Scholar 

  • Hagos SM, Cook KH (2008) Ocean warming and late-twentieth-century Sahel drought and recovery. J Clim 21:3797–3814

    Google Scholar 

  • Han Z, Su T, Huang B et al (2019) Changes in global monsoon precipitation and the related dynamic and thermodynamic mechanisms in recent decades. Int J Climatol 39(3):1490–1503

    Google Scholar 

  • Hastenrath S, Greischar L (1993) The monsoonal heat budget of the hydrosphere-atmosphere system in the Indian Ocean sector. J Geophys Res 98:6869–6881

    Google Scholar 

  • He W, Zhao S, Liu Q, Jiang Y, Deng, B (2016) Long-range correlation in the drought and flood index from 1470 to 2000 in eastern China. Int J Climatol 36(4):1676–1685

    Google Scholar 

  • He Y et al (2018) Comparison of the effect of land–sea thermal contrast on interdecadal variations in winter and summer blockings. Clim Dyn 51:1275–1294

    Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):359

    Google Scholar 

  • Hoerling MP, Hurrell JW, Xu T, Bates GT, Phillips A (2004) Twentieth century North Atlantic climate change. Part II: understanding the effect of Indian Ocean warming. Clim Dyn 23:391–405

    Google Scholar 

  • Hoerling M, Hurrell J, Eischeid J, Phillips A (2006) Detection and attribution of twentieth-century northern and southern African rainfall change. J Clim 19:3989–4008

    Google Scholar 

  • Hu ZZ (1997) Interdecadal variability of summer climate over East Asia and its association with 500 hPa height and global sea surface temperature. J Geophys Res Atmos 102:19403–19412

    Google Scholar 

  • Huang B, Banzon VF, Freeman E, Lawrimore J, Liu W, Peterson TC, Smith TM, Thorne PW, Woodruff SD, Zhang H-M (2014) Extended reconstructed sea surface temperature version 4 (ERSST.v4): part I. Upgrades and intercomparisons. J Clim 28:911–930. https://doi.org/10.1175/JCLI-D-14-00006.1

    Article  Google Scholar 

  • Huang J, Xie Y, Guan X, Li D, Ji F (2017) The dynamics of the warming hiatus over the Northern Hemisphere. Clim Dyn 48(1–2):429–446. https://doi.org/10.1007/s00382-016-3085-8

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT et al (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett 36:L17808. https://doi.org/10.1029/2009GL040000

  • Jin Q, Wang C (2017) A revival of Indian summer monsoon rainfall since 2002. Nat Clim Change 7(8):587

    Google Scholar 

  • Joseph PV, Raman PL (1966) Existence of low level westerly jet stream over peninsular India during July. Indian J Meteorol Geophys 17:407–410

    Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteor Soc 83:1631–1644

    Google Scholar 

  • Kosaka Y, Xie SP (2016) The tropical Pacific as a key pacemaker of the variable rates of global warming. Nat Geosci 9(9):669

    Google Scholar 

  • Kug J-S, Kang I-S (2006) Interactive feedback between ENSO and the Indian Ocean. J Clim 19:1784–1801

    Google Scholar 

  • L’Heureux ML, Lee S, Lyon B (2013) Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat Clim Change 3:1–6. https://doi.org/10.1038/nclimate1840

    Article  Google Scholar 

  • Lau KM, Wu HT (2001) Principal modes of rainfall-SST variability of the Asian summer monsoon: a reassessment of the monsoon-ENSO relationship. J Clim 14(13):2880–2895

    Google Scholar 

  • Li T, Zhang Y, Chang CP et al (2001) On the relationship between Indian Ocean sea surface temperature and Asian summer monsoon. Geophys Res Lett 28(14):2843–2846

    Google Scholar 

  • Liu W, Huang B, Thorne PW, Banzon VF, Zhang H-M, Freeman E, Lawrimore J, Peterson TC, Smith TM, Woodruff SD (2014) Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4): part II. Parametric and structural uncertainty estimations. J Clim. https://doi.org/10.1175/jcli-d-14-00007.1

    Article  Google Scholar 

  • Liu W, Xie SP, Lu J (2016) Tracking ocean heat uptake during the surface warming hiatus. Nat Commun 7:10926

    Google Scholar 

  • Luo HB, Yanai M (1984) The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: heat and moisture budgets. Mon Weather Rev 112:966–989

    Google Scholar 

  • Luo JJ, Behera SK, Masumoto Y et al (2010) Impact of global ocean surface warming on seasonal-to-interannual climate prediction. J Clim 24(6):1626–1646

    Google Scholar 

  • Luo JJ, Sasaki W, Masumoto Y (2012) Indian Ocean warming modulates Pacific climate change. Proc Natl Acad Sci USA 109:18701–18706

    Google Scholar 

  • Ma S, Zhou T (2015) Robust strengthening and westward shift of the tropical Pacific Walker circulation during 1979 ~ 2012: a comparison of 7 sets of reanalysis data and 26 AMIP5 models. J Clim 29(9):151210144222001

    Google Scholar 

  • Menzel L, Bürger G (2002) Climate change scenarios and runoff response in the Mulde catchment (Southern Elbe, Germany). J Hydrol 267:53–64

    Google Scholar 

  • Mondal A, Kundu S, Mukhopadhyay A (2012) Rainfall trend analysis by Mann-Kendall test: a case study of north-eastern part of Cuttack district, Orissa. Int J Geol Earth Environ Sci 2(1):70–78

    Google Scholar 

  • Pathak A, Ghosh S, Martinez JA et al (2016) Role of oceanic and land moisture sources and transport in the seasonal and inter-annual variability of summer monsoon in India. J Clim 30(5):1839–1859

    Google Scholar 

  • Paul S et al (2016) Weakening of Indian summer monsoon rainfall due to changes in land use land cover. Sci Rep 6:32177

    Google Scholar 

  • Peng D, Zhou T (2017) Why was the arid and semiarid northwest China getting wetter in the recent decades? J Geophys Res Atmos 122(17):9060–9075

    Google Scholar 

  • Pierce DW, Barnett TP, Achutarao KM et al (2006) Anthropogenic Warming of the Oceans: observations and model results. J Clim 19(10):1873–1900

    Google Scholar 

  • Qiao YT, Luo HB, Jian MQ (2002) The temporal and spatial characteristics of moisture budgets over Asian and Australian monsoon regions. J Trop Meteorol 8:113–120

    Google Scholar 

  • Qiao Y, Wu R, Huang W, Jian M (2013) Interannual variability of moisture source over southern Indian Ocean during boreal summer and its relationship with local SST. Int J Climatol 33:556–567

    Google Scholar 

  • Ramage, Colin S (1971) Monsoon meteorology. No. 551.518 R3

  • Ramanathan V et al (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci USA 102:5326–5333

    Google Scholar 

  • Rao YP (1976) Southwest Monsoon (meteorological monograph). India Meteorological Department, New Delhi, p 366

    Google Scholar 

  • Richter I, Xie SP (2008) Muted precipitation increase in global warming simulations: a surface evaporation perspective. J Geophys Res Atmos 113:D24118. https://doi.org/10.1029/2008JD010561

  • Rodionov SN (2004) A sequential algorithm for testing climate regime shifts. Geophys Res Lett 31(9):111–142

    Google Scholar 

  • Roxy MK et al (2015) Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat. Commun 6:7423

    Google Scholar 

  • Sandeep S, Ajayamohan RS (2015) Poleward shift in Indian summer monsoon low level jetstream under global warming. Clim Dyn 45(1–2):337–351

    Google Scholar 

  • Savijarvi HI (1988) Global energy and moisture budgets from rawinsonde data. Mon Weather Rev 116:417–430

    Google Scholar 

  • Schwendike J, Govekar P, Reeder MJ, Wardle R, Berry GJ, Jakob C (2014) Local partitioning of the overturning circulation in the tropics and the connection to the Hadley and Walker circulations. J Geophys Res 119:1322–1339. https://doi.org/10.1002/2013JD020742

    Article  Google Scholar 

  • Seager R, Vecchi GA (2010) Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proc Natl Acad Sci USA 107(50):21277–21282. https://doi.org/10.1073/pnas.0910856107

    Article  Google Scholar 

  • Seager R, Naik N, Vecchi GA (2010) Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Clim 23(17):4651–4668

    Google Scholar 

  • Seager R, Neelin D, Simpson I et al (2014) Dynamical and thermodynamical causes of large-scale changes in the hydrological cycle over North America in response to global warming. J Clim 27(20):7921–7948

    Google Scholar 

  • Shi W, Xiao Z, Ai Y (2018) The behavior of deep convective clouds over the warm pool and connection to the Walker circulation. Sci China Earth Sci 61(11):1605–1621

    Google Scholar 

  • Sohn BJ, Yeh SW, Schmetz J et al (2013) Observational evidences of Walker circulation change over the last 30 years contrasting with GCM results. Clim Dyn 40(7–8):1721–1732

    Google Scholar 

  • Syroka J, Toumi R (2002) Recent lengthening of the south Asian summer monsoon season. Geophys Res Lett 29(10):96-1–96-4

    Google Scholar 

  • Tamura T, Koike T (2010) Modulation of the South Asian monsoon in early summer over last decades[C]. In: AGU Fall Meeting Abstracts

  • Tao Y, Cao J, Lan G, Su Q (2016) The zonal movement of the Indian-East Asian summer monsoon interface in relation to the land-sea thermal contrast anomaly over East Asia. Clim Dyn 46(9–10):2759–2771

    Google Scholar 

  • Tian H, Guo PW, Lu WS (2002) Features of water vapor transfer by summer monsoon and their relations to rainfall anomalies over China. J Nanjing Inst Meteorol 25:496–502 (In Chinese)

    Google Scholar 

  • Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s global energy budget. Bull Amer Meteorol Soc 90:311–324

    Google Scholar 

  • Turner A, Innes P, Slingo JM (2007) The effect of doubled CO2 and model basic state biases on the monsoon-ENSO system. I: mean response and interannual variability. Q J R Meteorol Soc 133:1143–1157. https://doi.org/10.1002/qj.82

    Article  Google Scholar 

  • Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Bechtold DC, Fiorino M et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012

    Google Scholar 

  • von Känel L, Frölicher TL, Gruber N (2017) Hiatus-like decades in the absence of equatorial Pacific cooling and accelerated global ocean heat uptake. Geophys Res Lett 44(15):7909–7918

    Google Scholar 

  • Wallace JM, Smith C, Bretherton CS (1992) Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J Clim 5(6):561–576

    Google Scholar 

  • Wang B, Liu J, Kim HJ, Webster PJ, Yim SY (2012) Recent change of the global monsoon precipitation (1979–2008). Clim Dyn 39(5):1123–1135

    Google Scholar 

  • Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res Oceans (1978–2012) 103:14451–14510

    Google Scholar 

  • Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-98. Nature 401:356

    Google Scholar 

  • Wentz FJ, Ricciardulli L, Hilburn K et al (2007) How much more rain will global warming bring? Science 317(5835):233–235

    Google Scholar 

  • Williams AP, Funk C, Michaelsen J et al (2012) Recent summer precipitation trends in the Greater Horn of Africa and the emerging role of Indian Ocean sea surface temperature. Clim Dyn 39(9–10):2307–2328

    Google Scholar 

  • Wu B, Francis JA (2019) Summer Arctic cold anomaly dynamically linked to East Asian heat waves. J Clim 32.4:1137–1150

    Google Scholar 

  • Wu Y, Ting M, Seager R, Huang H-P, Cane MA (2010) Changes in storm tracks and energy transports in a warmer climate simulated by the GFDL CM2.1 model. Climate Dyn. https://doi.org/10.1007/s00382-010-0776-4 (in press)

    Article  Google Scholar 

  • Yang J, Liu Q, Liu Z (2010) Linking observations of the Asian monsoon to the Indian Ocean SST: possible roles of Indian Ocean basin mode and dipole mode. J Clim 23(21):5889–5902

    Google Scholar 

  • Yoo SH, Yang S, Ho CH (2006) Variability of the Indian Ocean sea surface temperature and its impacts on Asian-Australian monsoon climate. J Geophys Res Atmos 111(D3)

  • Yu L (2007) Global variations in oceanic evaporation (1958-2005): the role of the changing wind speed. J Clim 20:5376–5390

    Google Scholar 

  • Yu L, Weller RA (2007) Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005). Bull Am Meteor Soc 88:527–539

    Google Scholar 

  • Yu L, Jin X, Weller RA (2008) Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. In: OAFlux Project Technical Report. OA-2008-01, p 64, 2008

  • Yu B, Zwiers FW, Boer GJ, Ting MF (2012) Structure and variances of equatorial zonal circulation in a multimodel ensemble. Clim Dyn 39:2403–2419. https://doi.org/10.1007/s00382-012-1372-6

    Article  Google Scholar 

  • Yun L, Yan D, Lianyi Z et al (2018) The 30-50-day intraseasonal oscillation of SST and precipitation in the South Tropical Indian Ocean. Atmosphere 9(2):69

    Google Scholar 

  • Zhang C (2013) Madden-Julian oscillation: bridging weather and climate. Bull Am Meteor Soc 94:1849–1870

    Google Scholar 

  • Zhang L, Kristopher BK (2017) The role of tropical interbasin SST gradients in forcing Walker circulation trends. J Clim 30(2):499–508

    Google Scholar 

  • Zhang Ling et al (2017) Atmospheric response to Indian Ocean Dipole forcing: changes of Southeast China winter precipitation under global warming. Clim Dyn 48(5-6):1467–1482

    Google Scholar 

Download references

Acknowledgments

This study acknowledges the support of the National Natural Science Foundation of China (Grant Nos. 41530531, 41675092, 41705053, 41575082, 41575074), the Swedish Research Council (Vetenskapsrådet, grant no. 2013-06476), the National Key R&D Program of China (Grant No. 2017YFC1502303), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 17KJB170018), and the Postdoctoral Science Foundation of China (Grant Nos. 2017M611921). Data analysis is performed on the Swedish National Infrastructure for Computing (SNIC) at the National Supercomputer Centre (NSC). We also gratefully acknowledge financial support from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guolin Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Su, T., Zhang, Q. et al. Thermodynamic and dynamic effects of increased moisture sources over the Tropical Indian Ocean in recent decades. Clim Dyn 53, 7081–7096 (2019). https://doi.org/10.1007/s00382-019-04977-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-019-04977-w

Keywords

Navigation