Skip to main content
Log in

Dynamical connection between the stratospheric Arctic vortex and sea surface temperatures in the North Atlantic

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We used two long-term reanalysis datasets and time-slice simulations to examine the decadal relationship between the stratospheric Arctic vortex (SAV) and sea surface temperature anomalies (SSTAs) in the North Atlantic and the dynamic mechanisms involved in the linkage between the two. Our results show that there is a significant decadal linkage between SSTAs over the North Atlantic and the SAV, where warmed (cooled) SSTAs over the North Atlantic in association with its principal mode correspond to a weakened (strengthened) SAV. The warmed North Atlantic SSTAs tend to result in a weakened SAV via two dynamic processes: (1) constructive interference at high latitudes with a ridge in the Atlantic sector and a trough in the Pacific accompanied by a negative North Atlantic Oscillation-like pattern over the North Atlantic and a weakened Aleutian low over the North Pacific; and (2) more wavenumber-1 waves propagated into the Arctic stratosphere by modifying the baroclinic term of the zonal mean background state and altering the propagating conditions around the tropopause over the Arctic. Results from reanalysis and model simulations both suggest that a strengthening wave intensity in the high-latitude troposphere and more upward propagation of the planetary wavenumber-1 wave in response to the warmed North Atlantic SSTAs conjunctly contribute to the increased planetary wave flux in the Arctic stratosphere, facilitating a weakened SAV. These results provide a new understanding of what dynamic processes control the SAV, and will help to predict the stratosphere on decadal timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics. Academic Press Inc, New York, p 489

    Google Scholar 

  • Baldwin MP, Thompson DWJ (2009) A critical comparison of stratosphere–troposphere coupling indices. Q J R Meteorol Soc 135:1661–1672

    Google Scholar 

  • Baldwin MP, Stephenson DB, Thompson DWJ, Dunkerton TJ, Charlton AJ, O’Neill A (2003) Stratospheric memory and skill of extended-range weather forecasts. Science 301:636–640

    Google Scholar 

  • Butchart N, Clough SA, Palmer TN, Trevelyan PJ (1982) Simulations of an observed stratospheric warming with quasi-geostrophic refractive index as a model diagnostic. Q J R Meteorol Soc 108:475–502

    Google Scholar 

  • Charlton AJ, O’Neill A, Lahoz WA, Massacand AC (2004) Sensitivity of tropospheric forecasts to stratospheric initial conditions. Q J R Meteorol Soc 130:1771–1792

    Google Scholar 

  • Charney JG, Drazin PG (1961) Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J Geophys Res 66:83–109

    Google Scholar 

  • Chen P, Robinson WA (1992) Propagation of planetary waves between the troposphere and stratosphere. J Atmos Sci 49:2533–2545

    Google Scholar 

  • Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J, Jones J (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci 7:627–637

    Google Scholar 

  • Corti S, Weisheimer A, Palmer TN, Doblas-Reyes FJ, Magnusson L (2012) Reliability of decadal predictions. Geophys Res Lett. https://doi.org/10.1029/2012gl053354

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, Rosnay P, Tavolato C, Thépautaan JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Delworth TL, Zhang R, Mann ME (2007) Decadal to centennial variability of the Atlantic from observations and models. Ocean circulation: mechanisms and impacts. Geophys Monogr Am Geophys Union 173:131–148

    Google Scholar 

  • Ding YH, Liu Y, Liang S, Ma X, Zhang Y, Si D, Liang P, Song Y, Zhang J (2014) Interdecadal variability of the east Asian winter monsoon and its possible links to global climate change. J Meteorol Res 28:693–713

    Google Scholar 

  • Enfield DB, Mestas-Nunez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080

    Google Scholar 

  • Fletcher C, Kushner P (2011) The role of linear interference in the annular mode response to tropical SST forcing. J Clim 24:778–794. https://doi.org/10.1175/2010JCLI3735.1

    Article  Google Scholar 

  • Garfinkel CI, Hartmann DL (2008) The different ENSO teleconnections and their effects on the stratospheric polar vortex. J Geophys Res 113:1044

    Google Scholar 

  • Guo YP, Li JP, Feng J, Xie F, Sun C, Zheng JY (2016) The multidecadal variability of the asymmetric mode of the boreal autumn Hadley circulation and its link to the Atlantic Multidecadal Oscillation. J Clim 29:5625–5641. https://doi.org/10.1175/JCLI-D-15-0025.1

    Article  Google Scholar 

  • Holton JR, Haynes PH, McIntyre ME, Douglass AR, Rood RB, Pfister L (1995) Stratosphere–troposphere exchange. Rev Geophys 33:403–439

    Google Scholar 

  • Hu D, Guan Z (2018) Decadal relationship between the stratospheric arctic vortex and pacific decadal oscillation. J Clim 31:3371–3386

    Google Scholar 

  • Hu D, Tian W, Xie F, Shu J, Dhomse S (2014) Effects of meridional sea surface temperature gradients on the stratospheric temperature and circulation. Adv Atmos Sci 31:888–900

    Google Scholar 

  • Hu D, Tian W, Xie F, Wang C, Zhang J (2015) Impacts of stratospheric ozone depletion and recovery on wave propagation in the boreal winter stratosphere. J Geophys Res 120:8299–8317

    Google Scholar 

  • Hu D, Guan Z, Tian W, Ren R (2018) Recent strengthening of the stratospheric Arctic vortex response to warming in the central North Pacific. Nat Commun 9:1697

    Google Scholar 

  • Huang B, Thorne PW, Banzon VF, Boyer T, Chepurin G, Lawrimore JH, Menne MJ, Smith TM, Vose RS, Zhang HM (2017) Extended reconstructed sea surface temperature, version 5 (ERSST v5): upgrades, validations, and intercomparisons. J Clim 30:8179

    Google Scholar 

  • Hurwitz MM, Newman PA, Garfinkel CI (2012) On the influence of North Pacific sea surface temperature on the Arctic winter climate. J Geophys Res 117:161–169

    Google Scholar 

  • Jadin EA, Wei K, Zyulyaeva YA, Chen W, Wang L (2010) Stratospheric wave activity and the Pacific Decadal Oscillation. J Atmos Sol Terr Phys 72:1163–1170

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–472

    Google Scholar 

  • Karoly DJ, Hoskins BJ (1982) Three dimensional propagation of planetary waves. J Meteorol Soc Jpn 60:109–123

    Google Scholar 

  • Kidston J, Scaife AA, Hardiman SC, Mitchell DM, Butchart N, Baldwin MP, Gray LJ (2015) Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat Geosci 8:433

    Google Scholar 

  • Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn 93:5–48. https://doi.org/10.2151/jmsj.2015-001

    Article  Google Scholar 

  • Kolstad EW, Charlton-Perez AJ (2011) Observed and simulated precursors of stratospheric polar vortex anomalies in the Northern Hemisphere. Clim Dyn 37:1443–1456

    Google Scholar 

  • Kren AC, Marsh DR, Smith AK, Pilewskie P (2016) Wintertime Northern Hemisphere response in the stratosphere to the Pacific Decadal oscillation using the whole atmosphere community climate model. J Clim 29:1031–1049

    Google Scholar 

  • Latif M, Collins M, Pohlmann H, Keenlyside N (2006) A review of predictability studies of Atlantic sector climate on decadal time scales. J Clim 19:5971–5987

    Google Scholar 

  • Li Q, Graf HF, Giorgetta MA (2007) Stationary planetary wave propagation in Northern Hemisphere winter climatological analysis of the refractive index. Atmos Chem Phys 7:183–200

    Google Scholar 

  • Li JP, Sun C, Jin FF (2013) NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys Res Lett 40:5497–5502

    Google Scholar 

  • Li Y, Tian W, Xie F, Wen Z, Zhang J, Hu D, Han Y (2017) The connection between the second leading mode of the winter North Pacific sea surface temperature anomalies and stratospheric sudden warming events. Clim Dyn 1:1–15

    Google Scholar 

  • Manzini E, Giorgetta MA, Esch M, Kornblueh L, Roeckner E (2006) The influence of sea surface temperatures on the northern winter stratosphere: ensemble simulations with the MAECHAM5 model. J Clim 19:3863–3881

    Google Scholar 

  • Manzini E, Cagnazzo C, Fogli PG, Bellucci A, Müller WA (2012) Stratosphere–troposphere coupling at inter-decadal time scales: implications for the North Atlantic Ocean. Geophys Res Lett 2012:39

    Google Scholar 

  • McLandress C, Shepherd TG (2009) Simulated anthropogenic changes in the Brewer–Dobson circulation, including its extension to high latitudes. J Clim 22:1516–1540

    Google Scholar 

  • Mitchell DM, Gray LJ, Anstey J, Baldwin MP, Charlton-Perez AJ (2013) The influence of stratospheric vortex displacements and splits on surface climate. J Clim 26:2668–2682

    Google Scholar 

  • Neale RB et al (2012) Description of the NCAR community atmosphere model (CAM 5.0). NCAR Tech. Note NCAR/TN-4861STR, p 274. http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf

  • Nigam S, Guan B, Ruiz-Barradas A (2011) Key role of the Atlantic multidecadal oscillation in 20th century drought and wet periods over the Great Plains. Geophys Res Lett 38:L16713. https://doi.org/10.1029/2011gl048650

    Article  Google Scholar 

  • Omrani NE, Keenlyside NS, Bader J, Manzini E (2014) Stratosphere key for wintertime atmospheric response to warm Atlantic decadal conditions. Clim Dyn 42:649–663. https://doi.org/10.1007/s00382-013-1860-3

    Article  Google Scholar 

  • Omrani NE, Bader J, Keenlyside NS, Manzini E (2016) Troposphere–stratosphere response to large-scale North Atlantic Ocean variability in an atmosphere/ocean coupled model. Clim Dyn 46:1397–1415. https://doi.org/10.1007/s00382-015-2654-6

    Article  Google Scholar 

  • Palmer TN (1981) Aspects of stratospheric sudden warmings studied from a transformed Eulerian-mean viewpoint. J Geophys Res 86:9679–9687. https://doi.org/10.1029/JC086iC10p09679

    Article  Google Scholar 

  • Palmer TN (1982) Properties of the Eliassen-Palm flux for planetary scale motions. J Atmos Sci 39:992–997

    Google Scholar 

  • Peings Y, Magnusdottir G (2014) Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic ocean. Environ Res Lett 9(3):034018

    Google Scholar 

  • Peings Y, Magnusdottir G (2016) Wintertime atmospheric response to Atlantic multidecadal variability: effect of stratospheric representation and ocean–atmosphere coupling. Clim Dyn 47:1029–1047. https://doi.org/10.1007/s00382-015-2887-4

    Article  Google Scholar 

  • Pyper BJ, Peterman RM (1998) Comparison of methods to account for autocorrelation in correlation analyses of fish data. Can J Fish Aquat Sci 55:2127–2140

    Google Scholar 

  • Rao J, Ren R (2016a) Asymmetry and nonlinearity of the influence of ENSO on the northern winter stratosphere: 1. Observations. J Geophys Res 121:9000–9016

    Google Scholar 

  • Rao J, Ren R (2016b) A decomposition of ENSO’s impacts on the northern winter stratosphere: competing effect of SST forcing in the tropical. Indian Ocean Clim Dyn 46:3689–3707

    Google Scholar 

  • Reichler T, Kim J, Manzini E, Kröger J (2012) A stratospheric connection to Atlantic climate variability. Nat Geosci 5:783

    Google Scholar 

  • Roff G, Thompson DWJ, Hendon H (2011) Does increasing model stratospheric resolution improve extended-range forecast skill? Geophys Res Lett 38:387–404

    Google Scholar 

  • Sassi F, Kinnison D, Boville BA, Garcia RR, Roble R (2004) Effect of El Niño-Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J Geophys Res. https://doi.org/10.1029/2003JD004434

    Article  Google Scholar 

  • Shepherd TG, McLandress C (2011) A robust mechanism for strengthening of the Brewer–Dobson circulation in response to climate change: critical-layer control of subtropical wave breaking. J Atmos Sci 68:784–797

    Google Scholar 

  • Shu J, Tian W, Austin J, Chipperfield MP, Xie F, Wang W (2011) Effects of sea surface temperature and greenhouse gas changes on the transport between the stratosphere and troposphere. J Geophys Res 116:0148–0227

    Google Scholar 

  • Simpson IR, Blackburn M, Haigh JD (2009) The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J Atmos Sci 66:1347–1365. https://doi.org/10.1175/2008JAS2758.1

    Article  Google Scholar 

  • Sun C, Li JP, Feng J, Xie X (2015a) A decadal-scale teleconnection between the North Atlantic oscillation and subtropical eastern Australian rainfall. J Clim 28:1074–1092

    Google Scholar 

  • Sun C, Li JP, Zhao S (2015b) Remote influence of Atlantic multidecadal variability on Siberian warm season precipitation. Sci Rep. https://doi.org/10.1038/srep16853

    Article  Google Scholar 

  • Sun C, Kucharski F, Li J, Jin FF, Kang IS, Ding R (2017) Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat Commun 8:15998. https://doi.org/10.1038/ncomms15998

    Article  Google Scholar 

  • Sun C, Li J, Li X, Xue JQ, Ding RQ, Xie F, Li Y (2018) Oceanic forcing of the interhemispheric SST dipole associated with the Atlantic Multidecadal Oscillation. Environ Res Lett. https://doi.org/10.1088/1748-9326/aacf66

    Article  Google Scholar 

  • Sun C, Li J, Kucharski F, Xue JQ, Li X (2019a) Contrasting spatial structures of Atlantic Multidecadal Oscillation between observations and slab ocean model simulations. Clim Dyn 52:1395–1411. https://doi.org/10.1007/s00382-018-4201-8

    Article  Google Scholar 

  • Sun C, Li J, Kucharski F, Kang IS, Jin FF, Wang KC, Wang CZ, Ding RQ, Xie F (2019b) Recent acceleration of Arabian Sea warming induced by the Atlantic-Western Pacific trans-basin multidecadal variability. Geophys Res Lett 46:1662–1671. https://doi.org/10.1029/2018GL081175

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118. https://doi.org/10.1126/science.1109496

    Article  Google Scholar 

  • Wang Y, Li S, Luo D (2009) Seasonal response of Asian monsoonal climate to the Atlantic multidecadal oscillation. J Geophys Res 114:D02112. https://doi.org/10.1029/2008jd010929

    Article  Google Scholar 

  • Woo SH, Sung MK, Son SW, Kug JS (2015) Connection between weak stratospheric vortex events and the Pacific Decadal Oscillation. Clim Dyn 45:3481–3492

    Google Scholar 

  • Xie F, Li J, Tian W, Feng J, Huo Y (2012) Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmos Chem Phys 12:5259–5273

    Google Scholar 

  • Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. https://doi.org/10.1029/2006gl026267

    Article  Google Scholar 

  • Zhang R, Delworth TL (2007) Impact of the Atlantic Multidecadal Oscillation on North Pacific climate variability. Geophys Res Lett 34:L23708. https://doi.org/10.1029/2007GL031601

    Article  Google Scholar 

  • Zhou YF, Wu ZW (2016) Possible impacts of mega-El Niño/Southern oscillation and Atlantic multidecadal oscillation on Eurasian heat wave frequency variability. Q J R Meteorol Soc 142:1647–1661

    Google Scholar 

Download references

Acknowledgements

We thank Professor Andrew Charlton-Perez for useful comments and suggestions. We are also grateful to the groups and agencies for providing the datasets used in this study. The NCEP1 reanalysis data used here was obtained from the NOAA-CIRES Climate Diagnostics Center and are accessible at http://www.esrl.noaa.gov, the JRA55 reanalysis data was obtained from https://climatedataguide.ucar.edu/climate-data, the ERA-Interim data was available online at https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype5sfc/, and the HadISST data was obtained from the Met Office Hadley Centre, are available at http://www.metoffice.gov.uk/hadobs/hadisst/data. This work was supported jointly by the National Natural Science Foundation of China (41975073, 41805031, 41705057), Natural Science Foundation of Jiangsu Province of China (BK20160949, BK20170637), the China Postdoctoral Science Foundation funded project (2019T120415), and the Startup Foundation for Introducing Talent of NUIST (2017r040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yipeng Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Guan, Z., Guo, Y. et al. Dynamical connection between the stratospheric Arctic vortex and sea surface temperatures in the North Atlantic. Clim Dyn 53, 6979–6993 (2019). https://doi.org/10.1007/s00382-019-04971-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-019-04971-2

Navigation