Skip to main content

Advertisement

Log in

Simulation of mid-latitude winter storms over the North Atlantic Ocean: impact of boundary layer parameterization schemes

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study discusses the performance of various planetary boundary layer parameterization (PBL) schemes—the Quasi-Normal Scale Elimination (QNSE), the University of Washington Moist Turbulence (UWMT), and the Yonsei University (YSU)—for the simulation of rapidly developing North Atlantic (NA) mid-latitude winter storms. Sensitivity experiments with the three PBL schemes, YSU, QNSE, and UWMT, indicate that there are minor differences at the center of the storm while simulating the evolution of the three explosive storms Klaus (21–27 January 2009), Xynthia (25 February–03 March 2010), and Gong (16–20 January 2013). The differences are shown in terms of the central minimum pressure, 10-m wind, specific humidity, CAPE, transitional speed, boundary layer height and frictional velocity of these mid-latitude storms. One of the main result shows the capability of QNSE and UWMT PBL schemes to reproduce accurately both the cyclogenesis and explosive stage for these mid-latitude storms during the winter season, better than YSU scheme. Almost all PBL schemes show dry bias from middle to upper troposphere (600 hPa–250 hPa), while YSU scheme carries this bias at the surface boundary layer, for all simulations. Moreover, QNSE, UWMT and YMSU PBL schemes underestimate the tangential winds for these mid-latitude storms. The 24 h accumulated latent heat flux and precipitation from UWMT scheme show modified results as compared to YSU and QNSE PBL schemes. Overall results show the superiority of QNSE and UWMT PBL schemes for an accurate simulation of the explosive stage of these North Atlantic winter storms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Anthes RA (1983) Regional models of the atmosphere in middle latitudes. Mon Weather Rev 111(6):1306–1335

    Google Scholar 

  • Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19:3518–3543

    Google Scholar 

  • Bengtsson L, Hodges KI, Keenlyside N (2009) Will extratropical storms intensify in a warmer climate? J Clim 22:2276–2301

    Google Scholar 

  • Bergeron T (1954) Reviews of morden meteorology-12: the problem of tropical hurricanes. Q J R Meteorol Soc 80:131–164

    Google Scholar 

  • Bougeault P, Lacarrere P (1989) Parameterization of orography-induced turbulence in a mesobeta—scale model. Mon Weather Rev 117:1872–1890

    Google Scholar 

  • Braun SA, Tao WK (2000) Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon Weather Rev 128(12):3941–3961

    Google Scholar 

  • Bretherton CS, Sungsu P (2009) A new moist turbulence parameterization in the Community Atmosphere Model. J Clim 22:3422–3448

    Google Scholar 

  • Buizza R, Hollingsworth A (2002) Storm prediction over Europe using the ECMWF ensemble prediction system. Meteorol Appl 9:289–305. https://doi.org/10.1017/S1350482702003031

    Article  Google Scholar 

  • Cardoso RM, Soares PMM, Miranda PMA, Belo-Pereira M (2013) WRF high resolution simulation of Iberian mean and extreme precipitation climate. Int J Climatol 33:2591–2608. https://doi.org/10.1002/joc.3616

    Article  Google Scholar 

  • Carvalho D, Rocha A, Gómez-Gesteira M, Santos C (2012) A sensitivity study of the WRF model in wind simulation for an area of high wind energy. Environ Model Softw 33:23–34

    Google Scholar 

  • Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature. Geosci Model Dev 7:1247–1250. https://doi.org/10.5194/gmd-7-1247-2014

    Article  Google Scholar 

  • Chandrasekar R, Balaji C (2012) Sensitivity of tropical cyclone Jal simulations to physics parameterizations. J Earth Syst Sci 121(4):923–946

    Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129:569–585

    Google Scholar 

  • Chou MD, Suarez MJ (1994) An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech Memo 104606:1–84

    Google Scholar 

  • Chou MD, Suarez MJ (1999) A solar radiation parameterization for atmospheric studies. NASA/TM-1999-104606 15:1–51

    Google Scholar 

  • Cohen AE, Cavallo SM, Coniglio MC, Brooks HE (2015) A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments. Weather Forecast 30(3):591–612

    Google Scholar 

  • Dasari HP, Salgado R (2015) Numerical modelling of heavy rainfall event over Madeira Island in Portugal: sensitivity to different micro physical processes. Meteorol Appl 22(1):113–127

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kallberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. https://doi.org/10.1002/gj.828

    Article  Google Scholar 

  • Doyle JD, Amerault C, Reynolds CA, Reinecke PA (2014) Initial condition sensitivity and predictability of a severe extratropical cyclone using a moist adjoint. Mon Weather Rev 142(1):320–342

    Google Scholar 

  • Emanuel KA (1986) An air-sea interaction theory for tropical storms. Part I: steady state maintenance. J Atmos Sci 43:585–604

    Google Scholar 

  • Emery WJ, Radebaugh M, Fowler C, Cavalieri D, Steffen K (1991) A comparison of sea ice parameters computed from advanced very high resolution radiometer and LANDSAT satellite imagery, and from airborne passive microwave radiometry. J Geophys Res 96:22075–22085

    Google Scholar 

  • Enz R, Zimmerli P, Schwarz S (2009) Natural catastrophes and man-made disasters in 2008: North America and Asia suffer heavy losses, Swiss Re Sigma Report No. 2, Zurich, Switzerland, pp 1–41. Available at http://www.preventionweb.net/files/8841_Sigma22009e.pdf

  • Ferreira J, Pradhan PK, Liberato MLR (2014) Impacts of extratropical storm Stephanie assessed by a high resolution model setting. In: Book of abstracts of international conference mathematics and engineering in marine and earth problems (MEME’2014), Aveiro University, pp 92–97

  • Ferreira J, Liberato MLR, Ramos Alexandre M (2017) On the relationship between atmospheric water vapour transport and extra-tropical storms development. Phys Chem Earth (A/B/C) 94:56–65. https://doi.org/10.1016/j.pce.2016.01.001

    Article  Google Scholar 

  • Fink AH, Brücher T, Ermert V, Krüger A, Pinto JG (2009) The European storm Kyrill in January 2007: synoptic evolution, meteorological impacts and some considerations with respect to climate change. Nat Hazards Earth Syst Sci 9(2):405–423

    Google Scholar 

  • Galperin B, Sukoriansky S (2010) Geophysical flows with anisotropic turbulence and dispersive waves: flows with stable stratification. Ocean Dyn 60:1319. https://doi.org/10.1007/s10236-010-0325-z

    Article  Google Scholar 

  • Haarsma RJ, Hazeleger W, Severijns C, De Vries H, Sterl A, Bintanja R, Van Oldenborgh GJ, van den Brink HW (2013) More hurricanes to hit western Europe due to global warming. Geophys Res Lett 40(9):1783–1788

    Google Scholar 

  • Hastings DA, Emery WJ (1992) The advanced very high resolution radiometer (AVHRR)-A brief reference guide. Photogram Eng Remote Sens 58:1183–1188

    Google Scholar 

  • Haylock MR (2011) European extra-tropical storm damage risk from a multi-model ensemble of dynamically-downscaled global climate models. Nat Hazards Earth Syst Sci 11(10):2847

    Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AM, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113(D20)

  • Hénin R, Liberato MLR, Ramos AM, Gouveia CM (2018) Assessing the use of satellite-based estimates and high-resolution precipitation datasets for the study of extreme precipitation events over the Iberian Peninsula. Water 10(11):1–19. https://doi.org/10.3390/w10111688

    Article  Google Scholar 

  • Heo KY, Lee J-W, Ha K-J, Jun K-C, Park K-S, Jae-Il K (2009) Simulation of atmospheric states for a storm surge on the west coast of Korea: model comparison between MM5, WRF and COAMPS. Nat Hazards 51:151–162

    Google Scholar 

  • Hewson TD, Titley HA (2010) Objective identification, typing and tracking of the complete life-cycles of cyclonic features at high spatial resolution. Meteorol Appl 17(3):355–381

    Google Scholar 

  • Hewson TD, Neu U (2015) Storms, windstorms and the IMILAST project. Tellus A Dyn Meteor Oceanogr 67(1):1–33

    Google Scholar 

  • Hong SY (2010) A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Q J R Meteoro Soc 136:1481–1496

    Google Scholar 

  • Hong SY, Pan HL (1996) Nonlocal boundary layer vertical diffusion in a medium–range forecast model. Mon Weather Rev 124:2322–2339

    Google Scholar 

  • Hong SY, Lim JO (2006) The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteorol Soc 42:129–151

    Google Scholar 

  • Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9):2318–2341

    Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine Scales. J Hydrometeorol 8:38–55

    Google Scholar 

  • Janjić ZI (1994) The step-mountain Eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945

    Google Scholar 

  • Janjić ZI (2001) Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. Office Note No. 437, National Centers for Environmental Prediction, pp 1–61

  • Jung T, Gulev SK, Rudeva I, Soloviov V (2006) Sensitivity of extratropical storm characteristics to horizontal resolution in the ECMWF model. Q J R Meteorol Soc 132:1839–1857

    Google Scholar 

  • Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181

    Google Scholar 

  • Kain JS, Fritsch JM, (1993) Convective parameterization for mesoscale models: the Kain Fritsch scheme. Meteorol Monogr Am Meteorol Soc pp 165–170

  • Karremann MK, Liberato MLR, Ordóñez P, Pinto JG (2016) Characterization of synoptic conditions and cyclones associated with top ranking potential wind loss events over Iberia. Atmos Sci Lett 17(6):354–361

    Google Scholar 

  • Kolen B, Slomp R, Van Balen W, Terpstra T, Bottema M, Nieuwenhuis S (2010) Learning from French experiences with storm Xynthia; damages after a flood. ISBN 978-90-77051-77-1

  • Kolusu SR, Marsham JH, Mulcahy J, Johnson B, Dunning C, Bush M, Spracklen DV (2015) Impacts of Amazonia biomass burning aerosols assessed from short-range weather forecasts. Atmos Chem Phys 5 15(21): 12251-12266

    Google Scholar 

  • Krishnamurti TN, Pattnaik S, Biswas MK, Bensman E, Kramer M, Surgi N, Kumar TV (2010) Hurricane forecasts with a mesoscale suite of models. Tellus A 62(5):633–646

    Google Scholar 

  • Kumar V, Pradhan PK (2019) Combination of PBL and convection schemes for explosive storms (submitted)

  • Kusaka H, Kondo H, Kikegawa Y, Kimura F (2001) A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Bound Layer Meteorol 101:329–358

    Google Scholar 

  • Li X, Pu Z (2008) Sensitivity of numerical simulation of early rapid intensification of Hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations. Mon Weather Rev 136(12):4819–4838

    Google Scholar 

  • Liberato MLR (2014) The 19 January 2013 windstorm over the north Atlantic: large-scale dynamics and impacts on Iberia. Weather Clim Extremes 5–6:16–28. https://doi.org/10.1016/j.wace.2014.06.002

    Article  Google Scholar 

  • Liberato MRL, Pinto JG, Trigo IF, Trigo RM (2011) Klaus—an exceptional winter storm over Northern Iberia and Southern France. Weather 66:330–334. https://doi.org/10.1002/wea.755

    Article  Google Scholar 

  • Liberato MLR, Pinto JG, Trigo RM, Ludwig P, Ordóñez P, Yuen D, Trigo IF (2012) Explosive development of winter storm Xynthia over the subtropical North Atlantic Ocean. Nat Hazards Earth Syst Sci 13:2239–2251. https://doi.org/10.5194/nhess-13-2239-2013

    Article  Google Scholar 

  • Liu Z, Ostrenga D, Teng W, Kempler S (2012) Tropical rainfall measuring mission (TRMM) precipitation data and services for research and applications. Bull Am Meteorol Soc 93:1317–1325

    Google Scholar 

  • Ludwig P, Pinto JG, Reyers M, Gray SL (2014) The role of anomalous SST and surface fluxes over the southeastern North Atlantic in the explosive development of windstorm Xynthia. Q J R Meteorol Soc 140(682):1729–1741

    Google Scholar 

  • Luna T, Rocha A, Carvalho AC, Ferreira JA, Sousa J (2011) Modelling the extreme precipitation event over Madeira Island on 20 February 2010. Nat Hazards Earth Syst Sci 11(9):2437–2452

    Google Scholar 

  • Ma LM, Bao XW (2016) Parameterization of planetary boundary-layer height with helicity and verification with tropical storm prediction. Bound Layer Meteorol 160(3):569–593

    Google Scholar 

  • Madala RV, Piacsek SA (1975) Numerical simulation of asymmetric hurricanes on a β-plane with vertical shear. Tellus 27(5):453–468

    Google Scholar 

  • Matulla C, Schoener W, Alexandersson H, von Stroch H, Wang XL (2008) European storminess: late nineteenth century to present. Clim Dyn 31:125–130. https://doi.org/10.1007/s00382-007-0333-y

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20(4):851–875

    Google Scholar 

  • Mlawer EJ, Steven J, Taubman PD, Brown MJ, Iacono CS (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated–k model for the longwave. J Geophys Res 102:16663–16682

    Google Scholar 

  • Murakami H, Mizuta R, Shindo E (2012) Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Clim Dyn 39:2569–2584

    Google Scholar 

  • Neu U, Akperov MG, Bellenbaum N, Benestad R, Blender R, Caballero R, Cocozza A, Dacre HF, Feng Y, Fraedrich K, Grieger J (2013) IMILAST: a community effort to intercompare extratropical storm detection and tracking algorithms. Bull Am Meteorol Soc 94(4):529–547

    Google Scholar 

  • Noh Y, Cheon WG, Hong SY, Raasch S (2003) Improvement of the K-profile Model for the planetary boundary layer based on large eddy simulation data. Bound layer Meteorol 107(2):401–427

    Google Scholar 

  • Pinto JG, Spangehl T, Ulbrich U, Speth P (2005) Sensitivities of a cyclone detection and tracking algorithm: individual tracks and climatology. Meteorologische Zeitschrift 14(6):823–838

    Google Scholar 

  • Pleim JE (2007) A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: model description and testing. J Appl Meteor Climatol 46:1383–1395

    Google Scholar 

  • Powers J, Klemp J, Skamarock W, Davis C, Dudhia J, Gill D, Coen J, Gochis D, Ahmadov R, Peckham S, Grell G, Michalakes J, Trahan S, Benjamin S, Alexander C, DiMego G, Wang W, Schwartz C, Romine G, Liu Z, Snyder C, Chen F, Barlage M, Yu W, Duda M (2017) The weather research and forecasting (WRF) model: overview, system efforts, and future directions. Bull Am Meteor Soc 98(8):1717–1737. https://doi.org/10.1175/BAMS-D-15-00308.1

    Article  Google Scholar 

  • Pradhan PK, Liberato ML, Ferreira JA, Dasamsetti S, Rao SV (2018) Characteristics of different convective parameterization schemes on the simulation of intensity and track of severe extratropical storms over North Atlantic. Atom Res 199:128–144

    Google Scholar 

  • Ratna SB, Ratnam JV, Behera SK, Ndarana T, Takahashi K, Yamagata T (2014) Performance assessment of three convective parameterization schemes in WRF for downscaling summer rainfall over South Africa. Clim Dyn 42(11–12):2931–2953

    Google Scholar 

  • Reale M, Liberato ML, Lionello P, Pinto JG, Salon S, Ulbrich S (2019) A global climatology of explosive cyclones using a multi-tracking approach. Tellus A 71(1):1–19. https://doi.org/10.1080/16000870.2019.1611340

    Article  Google Scholar 

  • Rogers DP, Vladimir VT (2013) Weather and climate resilience: effective preparedness through national meteorological and hydrological services. Directions in Development. Washington, DC: World Bank. https://doi.org/10.1596/978-1-4648-0026-9

  • Sanders F, Gyakum JR (1980) Synoptic-dynamic climatology of the “bomb”. Mon Weather Rev 108(10):1589–1606

    Google Scholar 

  • Schultz DM, Sienkiewicz JM (2013) Using frontogenesis to identify sting jets in extratropical storms. Weather Forecast 28:603–613. https://doi.org/10.1175/WAF-D-12-00126.1

    Article  Google Scholar 

  • Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227(7):3465–3485

    Google Scholar 

  • Soares PM, Cardoso RM, Miranda PM, de Medeiros J, Belo-Pereira M, Espirito-Santo F (2012) WRF high resolution dynamical downscaling of ERA-Interim for Portugal. Clim Dyn 39(9–10):2497–2522

    Google Scholar 

  • Sobel AH, Nilsson J, Polvani LM (2001) The weak temperature gradient approximation and balanced tropical moisture waves. J Atmos Sci 58(23):3650–3665

    Google Scholar 

  • Srinivas CV, Venkatesan R, Bhaskar Rao DV, Dasari HP (2007) Numerical simulation of Andhra severe storm (2003) model sensitivity to the boundary layer and convection parameterization. Pure Appl Geophys 164:1465–1487

    Google Scholar 

  • Sukoriansky S, Galperin B, Perov V (2005) Application of a new spectral model of stratified turbulence to the atmospheric boundary layer over sea ice. Bound Layer Meteorol 117:231–257

    Google Scholar 

  • Tapiador FJ, Roca R, Genio AD, Dewitte B, Petersen W, Zhang F (2019) Is precipitation a good metric for model performance? Bull Am Meteorol Soc. https://doi.org/10.1175/BAMS-D-17-0218.1

    Article  Google Scholar 

  • Tewari M, Chen F, Wang W, Dudhia J, LeMone MA, Mitchell K, Ek M, Gayno G, Wegiel J, Cuenca RH (2004) Implementation and verification of the unified NOAH land surface model in the WRF model. In: 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp 11–15

  • Thompson G, Eidhammer T (2014) A study of aerosol impacts on clouds and precipitation development in a large winter storm. J Atmos Sci 71:3636–3658. https://doi.org/10.1175/JAS-D-13-0305.1

    Article  Google Scholar 

  • Trigo IF (2006) Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparsion between ERA-40 and NCEP/NCAR reanalysis. Clim Dyn 26(2–3):127–143

    Google Scholar 

  • Ulbrich U, Fink AH, Klawa M, Pinto JG (2001) Three extreme storms over Europe in December 1999. Weather 56(3):70–80

    Google Scholar 

  • Ulbrich U, Leckebusch GC, Pinto JG (2009) Extra-tropical cyclones in the present and future climate: a review. Theor Appl Climatol 96:117. https://doi.org/10.1007/s00704-008-0083-8

    Article  Google Scholar 

  • Van den Besselaar EJM, Haylock MR, Van der Schrier G, Klein Tank AM (2011) A European daily high-resolution observational gridded data set of sea level pressure. J Geophys Res 116:D11110. https://doi.org/10.1029/2010JD015468

    Article  Google Scholar 

  • Walser A, Arpagaus M, Appenzeller C, Leutbecher M (2006) The impact of moist singular vectors and horizontal resolution on short-range limited-area ensemble forecasts for two European winter storms. Mon Weather Rev 134(10):2877–2887

    Google Scholar 

  • Wang XL, Zwiers FW, Swail VR, Feng Y (2009) Trends and variability of storminess in the northeast Atlantic region, 1874–2007. Clim Dyn 33:1179–1195

    Google Scholar 

  • Wang XL, Wan H, Zwiers FW, Swail VR, Compo GP, Allan RJ, Vose RS, Jourdain S, Yin X (2011) Trends and low-frequency variability of storminess over western Europe, 1878–2007. Clim Dyn 37:2355–2371

    Google Scholar 

  • Wernli H, Dirren S, Liniger MA, Zillig M (2002) Dynamical aspects of the life cycle of the winter storm ‘Lothar’ (24–26 December 1999). Q J R Meteorol Soc 128(580):405–429

    Google Scholar 

  • Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30:79–82

    Google Scholar 

  • WMO-World Meteorological Organization (2014) WMO statement on the status of the global climate in 2013. WMO-No 1130, pp 14–17

  • Xie B, Fung JCH, Chan A, Lau A (2012) Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model. J Geophys Res 117:D12103. https://doi.org/10.1029/2011JD017080

    Article  Google Scholar 

  • Yano JI, Bister M, Fuchs Ž, Gerard L, Phillips VT, Barkidija S, Piriou JM (2013) Phenomenology of convection-parameterization closure. Atmos Chem Phys 13(8):4111–4131

    Google Scholar 

  • Yoshida A, Asuma Y (2004) Structures and environment of explosively developing extratropical storms in the northwestern Pacific region. Mon Weather Rev 132(5):1121–1142

    Google Scholar 

  • Zhang DL, Anthes RA (1982) A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons with SESAME-79 data. J Appl Meteorol 21:1594–1609. https://doi.org/10.1175/15200450(1982)021%3c1594:AHRMOT%3e2.0.CO;2

    Article  Google Scholar 

  • Zhang Y, Smith JA, Ntelekos AA, Baeck ML, Krajewski WF, Moshary F (2009) Structure and evolution of precipitation along a cold front in the northeastern United States. J Hydrometeor 10:1243–1256. https://doi.org/10.1175/2009JHM1046.1

    Article  Google Scholar 

  • Zhao M, Held IM, Lin SJ (2012) Some counterintuitive dependencies of tropical cyclone frequency on parameters in a GCM. J Atmos Sci 69(7):2272–2283

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER-019524 (PTDC/AAC-CLI/121339/2010). Margarida L. R. Liberato also acknowledges funding from FCT and Portugal Horizon 2020 through project WEx-Atlantic (PTDC/CTA-MET/29233/2017). P. K. Pradhan wish to thankful to the University Grants Commission New-Delhi-India for providing financial support to carry out the research work. The authors gratefully acknowledge the NCEP/NCAR for their analysis data and WRF model code used in this study. We are also thankful to ECMWF ERA Interim reanalysis, UK Met Office, E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu), AVHRR and TRMM satellite products used in this study for the model validation. The Figures are made herewith in GrADs software are sincerely acknowledged. The authors also wish to thank three anonymous reviewers and editor for their review comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Pradhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1293 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, P.K., Liberato, M.L.R., Kumar, V. et al. Simulation of mid-latitude winter storms over the North Atlantic Ocean: impact of boundary layer parameterization schemes. Clim Dyn 53, 6785–6814 (2019). https://doi.org/10.1007/s00382-019-04962-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-019-04962-3

Keywords

Navigation