Future wind and wave climate projections in the Indian Ocean based on a super-high-resolution MRI-AGCM3.2S model projection

Abstract

In this study, the impact of climate change on wind and wave characteristics has been assessed using super-high-resolution MRI-AGCM3.2S wind data and numerical modeling over the Indian Ocean. Wave characteristics were generated in two 25-year periods covering historical and future projections (RCP8.5), and the assessment indicated that, generally, the spatial distributions of wind speed, significant wave height (Hs) and mean spectral wave period (Tm01) will not dramatically change in the future. The assessment also indicated that the wind direction reversing pattern during monsoons will remain similar. Moreover, future westerly winds in the Southern Indian Ocean (SIO) will shift to the south and a decrease in future wind speed north of the equator will occur, espearound the equator due to cially during winter. The relative change of Hs will be less than wind speed the predominance of swells transferring from the SIO. There will be no considerable change in the future Tm01, except during autumn in the area north of the equator. A novel climate stability index is suggested showing that the semi-enclosed seas in the NIO and the western coasts of India and the Maldives will be areas with the least stability in terms of wave climate. Despite experiencing more intense wind and wave climates, the overall climate will be more stable in the SIO than the NIO.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Aguiar-González B, Ponsoni L, Ridderinkhof H, van Aken HM, de Ruijter WPM, Maas LRM (2016) Seasonal variation of the South Indian tropical gyre. Deep Sea Res Part I 110:123–140. https://doi.org/10.1016/j.dsr.2016.02.004

    Article  Google Scholar 

  2. Anoop TR, Sanil Kumar V, Shanas PR, Johnson G (2015) Surface wave climatology and its variability in the North Indian Ocean based on ERA-Interim reanalysis. J Atmos Ocean Technol 32:1372–1385. https://doi.org/10.1175/JTECH-D-14-00212.1

    Article  Google Scholar 

  3. Bhaskaran PK, Gupta N, Dash MK (2014) Wind–wave climate projections for the Indian Ocean from satellite observations. J Mar Sci Res Dev S11:005. https://doi.org/10.4172/2155-9910.s11-005

    Google Scholar 

  4. Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions. 1. Model description and validation. J Geophys Res 104:7649–7666. https://doi.org/10.1029/98JC02622

    Article  Google Scholar 

  5. Cavaleri L (2009) Wave modeling—missing the peaks. J Phys Oceanogr 39:2757–2778. https://doi.org/10.1175/2009JPO4067.1

    Article  Google Scholar 

  6. Chen G, Chapron B, Ezraty R, Vandemark D (2002) A global view of swell and wind sea climate in the ocean by satellite altimeter and scatterometer. J Atmos Ocean Technol 19:1849–1859. https://doi.org/10.1175/1520-0426(2002)019%3c1849:AGVOSA%3e2.0.CO;2

    Article  Google Scholar 

  7. Dowdy AJ, Mills GA, Timbal B, Wang Y (2014) Fewer large waves projected for eastern Australia due to decreasing storminess. Nat Clim Change 4:283–286. https://doi.org/10.1038/nclimate2142

    Article  Google Scholar 

  8. Dube SK, Rao AD, Sinha PC, Murty TS, Bahulayan N (1997) Storm surge in the Bay of Bengal and Arabian Sea: the problem and its prediction. Mausam 48:283–304

    Google Scholar 

  9. Gray WM (1985) Technical document WMO TD No.72. WMO Geneva Switz 1:3–19

    Google Scholar 

  10. Gupta N, Bhaskaran PK (2016) Inter-dependency of wave parameters and directional analysis of ocean wind–wave climate for the Indian Ocean. Int J Climatol 37:3036–3043. https://doi.org/10.1002/joc.4898

    Article  Google Scholar 

  11. Gupta N, Bhaskaran PK, Dash MK (2015) Recent trends in wind–wave climate for the Indian Ocean. Curr Sci 108(12):2191–2201

    Google Scholar 

  12. Hasselmann S, Hasselmann K (1985) Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part I: a new method for efficient computations of the exact nonlinear transfer integral. J Phys Oceanogr 15:1378–1391. https://doi.org/10.1175/1520-0485(1985)015<1369:CAPOTN>2.0.CO;2

    Article  Google Scholar 

  13. Hasselmann K et al (1973) Measurements of wind–wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch Hydrogr Z Suppl 12:A8

    Google Scholar 

  14. Hemer MA, Trenham CE (2016) Evaluation of a CMIP5 derived dynamical global wind wave climate model ensemble. Ocean Model 103:190–203. https://doi.org/10.1016/j.ocemod.2015.10.009

    Article  Google Scholar 

  15. Hemer MA, Katzfey J, Trenham CE (2013) Global dynamical projections of surface ocean wave climate for a future high greenhouse gas emission scenario. Ocean Model 70:221–245. https://doi.org/10.1016/j.ocemod.2012.09.008

    Article  Google Scholar 

  16. Hibbard KA, Meehl GA, Cox PM, Friedlingstein P (2007) A strategy for climate change stabilization experiments. EOS Trans Am Geophys Union 88:217–221. https://doi.org/10.1029/2007EO200002

    Article  Google Scholar 

  17. Hithin NK, Sanil Kumar V, Shanas PR (2015) Trends of wave height and period in the Central Arabian Sea from 1996 to 2012: a study based on satellite altimeter data. Ocean Eng 108:416–425. https://doi.org/10.1016/j.oceaneng.2015.08.024

    Article  Google Scholar 

  18. Kamranzad B, Mori N (2018) Future projection of wave energy in Indian Ocean based on high resolution MRI-AGCM3.2S projection. Grand Renew Energy, Yokohama, Japan, 20 June 2018. http://www.grand-re2018.org/files/AREA8_program.pdf?0615

  19. Kamranzad B, Etemad-Shahidi A, Chegini V (2013) Assessment of wave energy variation in the Persian Gulf. Ocean Eng 70:72–80. https://doi.org/10.1016/j.oceaneng.2013.05.027

    Article  Google Scholar 

  20. Kamranzad B, Etemad-Shahidi A, Chegini V, Yeganeh-Bakhtiyari A (2015) Climate change impact on wave energy in the Persian Gulf. Ocean Dyn 65:777–794. https://doi.org/10.1007/s10236-015-0833-y

    Article  Google Scholar 

  21. Kamranzad B, Chegini V, Etemad-Shahidi A (2016) Temporal-spatial variation of wave energy and nearshore hotspots in the Gulf of Oman based on locally generated wind waves. Renew Energy 94:341–352. https://doi.org/10.1016/j.renene.2016.03.084

    Article  Google Scholar 

  22. Kamranzad B, Etemad-Shahidi A, Chegini V (2017a) Developing an optimum hotspot identifier for wave energy extracting in the northern Persian Gulf. Renew Energy 114:59–71. https://doi.org/10.1016/j.renene.2017.03.026

    Article  Google Scholar 

  23. Kamranzad B, Mori N, Shimura T (2017b) Performances of long-term wave hindcasts in the Northern Indian Ocean. J Jpn Soc Civil Eng Ser B2 Coastal Eng 73(2):I_157–I_162. https://doi.org/10.2208/kaigan.73.I_157

    Google Scholar 

  24. Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahor H, Kobayashi C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteor Soc Jpn 93:5–48. https://doi.org/10.2151/jmsj.2015-001

    Article  Google Scholar 

  25. Komen GJ, Hasselmann S, Hasselmann K (1984) On the existence of a fully developed wind sea spectrum. J Phys Oceanogr 14:1271–1285. https://doi.org/10.1175/1520-0485(1984)014%3c1271:OTEOAF%3e2.0.CO;2

    Article  Google Scholar 

  26. Krishna KM (2009) Intensifying tropical cyclones over the North Indian Ocean during summer monsoon-global warming. Global Planet Change 65:12–16. https://doi.org/10.1016/j.gloplacha.2008.10.007

    Article  Google Scholar 

  27. Lecacheux S, Pedreros R, Le Cozannet G, Thiébot J, De La Torre Y, Bulteau T (2012) A method to characterize the different extreme waves for islands exposed to various wave regimes: a case study devoted to Reunion Island. Nat Hazards Earth Syst Sci 12:2425–2437. https://doi.org/10.5194/nhess-12-2425-2012

    Article  Google Scholar 

  28. Mazaheri S, Kamranzad B, Hajivalie F (2013) Modification of 32 years ECMWF wind field using QuikSCAT data for wave hindcasting in Iranian Seas. J Coast Res I65:344–349. https://doi.org/10.2112/SI65-059.1

    Article  Google Scholar 

  29. Mizuta R et al (2012) Climate simulations using MRI-AGCM with 20-km grid. J Meteor Soc Jpn 90A:235–260. https://doi.org/10.2151/jmsj.2012-A12

    Article  Google Scholar 

  30. Mori N, Takemi T (2016) Impact assessment of coastal hazards due to future changes of tropical cyclones in the North Pacific Ocean. Weather Clim Extremes 11:53–69. https://doi.org/10.1016/j.wace.2015.09.002

    Article  Google Scholar 

  31. Mori N, Shimura T, Yasuda T, Mase H (2013) Multi-model climate projections of ocean surface variables under different climate scenarios-future change of waves, sea level and wind. Ocean Eng 71:122–129. https://doi.org/10.1016/j.oceaneng.2013.02.016

    Article  Google Scholar 

  32. Mori N, Shimura T, Kamahori H, Chawla A, Yasuda T, Mase H (2015) Long-term wave hindcast and wave climate analysis by JRA-55. J Jpn Soc Civil Eng B (Coast Eng) 71:I_103–I_108. https://doi.org/10.2208/kaigan.71.I_103

    Google Scholar 

  33. Moss RH et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. https://doi.org/10.1038/nature08823

    Article  Google Scholar 

  34. Patra A, Bhaskaran PK (2016a) Temporal variability in wind–wave climate and its validation with ESSO-NIOT wave atlas for the head Bay of Bengal. Clim Dyn 49:1271–1288. https://doi.org/10.1007/s00382-016-3385-z

    Article  Google Scholar 

  35. Patra A, Bhaskaran PK (2016b) Trends in wind–wave climate over the head Bay of Bengal region. Int J Climatol 36:4222–4240. https://doi.org/10.1002/joc.4627

    Article  Google Scholar 

  36. Remya PG, Kumar R, Basu S, Sarkar A (2012) Wave hindcast experiments in the Indian Ocean using MIKE 21 SW model. J Earth Syst Sci 121:385–392. https://doi.org/10.1007/s12040-012-0169-7

    Article  Google Scholar 

  37. Rhein M, Rintoul SR, Aoki S, Campos E, Chambers D, Feely RA, Gulev S, Johnson GC, Josey SA, Kostianoy A, Mauritzen C, Roemmich D, Talley LD, Wang F (2013) Observations: ocean. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  38. Ris RC, Holthuijsen LH, Booij N (1999) A third-generation wave model for coastal regions: 2. Verif J Geophys Res 104:7667–7681. https://doi.org/10.1029/1998JC900123

    Article  Google Scholar 

  39. Rogers WE, Babanin AV, Wang DW (2012) Observation-consistent input and whitecapping dissipation in a model for wind-generated surface waves: description and simple calculations. J Atmos Ocean Technol 29:1329–1346

    Article  Google Scholar 

  40. Roxy MK, Ritika K, Terray P, Masson S (2014) The curious case of Indian Ocean warming. J Clim 27:8501–8509. https://doi.org/10.1175/JCLI-D-14-00471.1

    Article  Google Scholar 

  41. Sanil Kumar V, Anoop TR (2015) Wave energy resource assessment for the Indian shelf seas. Renew Energy 76:212–219. https://doi.org/10.1016/j.renene.2014.11.034

    Article  Google Scholar 

  42. Schott F, McCreary JP (2001) The monsoon circulation of the Indian Ocean. Prog Oceanogr 51:1–123. https://doi.org/10.1016/S0079-6611(01)00083-0

    Article  Google Scholar 

  43. Schott FA, Xie SP, McCreary JP Jr (2009) Indian Ocean circulation and climate variability. Rev Geophys 47:1002. https://doi.org/10.1029/2007RG000245

    Article  Google Scholar 

  44. Seemanth M, Bhowmick SA, Kumar R, Sharma R (2016) Sensitivity analysis of dissipation parameterizations in a third-generation spectral wave model, WAVEWATCH III for Indian Ocean. Ocean Eng 124:252–273. https://doi.org/10.1016/j.oceaneng.2016.07.023

    Article  Google Scholar 

  45. Shanas PR, Sanil Kumar V, Hithin NK (2014) Comparison of gridded multi-mission and along-track mono-mission satellite altimetry wave heights with in situ near-shore buoy data. Ocean Eng 83:24–35. https://doi.org/10.1016/j.oceaneng.2014.03.014

    Article  Google Scholar 

  46. Shanas PR, Aboobacker VM, Albarakati AMA, Zubier KM (2017) Climate driven variability of wind–waves in the Red Sea. Ocean Model 119:105–117. https://doi.org/10.1016/j.ocemod.2017.10.001

    Article  Google Scholar 

  47. Shimura T, Mori N, Mase H (2015) Future projections of extreme ocean wave climates and the relation to tropical cyclones: ensemble experiments of MRI-AGCM3.2H. J Clim 28:9838–9856. https://doi.org/10.1175/JCLI-D-14-00711.1

    Article  Google Scholar 

  48. Shimura T, Mori N, Hemer MA (2016a) Projection of tropical cyclone-generated extreme wave climate based on CMIP5 multi-model ensemble in the Western North Pacific. Clim Dyn 49:1449–1462. https://doi.org/10.1007/s00382-016-3390-2

    Article  Google Scholar 

  49. Shimura T, Mori N, Hemer MA (2016b) Variability and future decreases in winter wave heights in the Western North Pacific. Geophys Res Lett 43:2716–2722. https://doi.org/10.1002/2016GL067924

    Article  Google Scholar 

  50. Swain J, Umesh PA, Balchand AN, Bhaskaran PK (2017) Wave Hindcasting Using WAM and WAVEWATCH III: a comparison study utilizing oceansat-2 (OSCAT) winds. J Oceanogr Mar Res 5:3. https://doi.org/10.4172/2572-3103.1000166

    Google Scholar 

  51. Tchernia P (1980) Descriptive regional oceanography. Pergamon Press, Oxford

    Google Scholar 

  52. The SWAN team (2016) Swan user manual. Delft University of Technology, Delft, The Netherlands

    Google Scholar 

  53. Tolman HL (2014) WAVEWATCH III Development Group, User manual and system documentation of AVEWATCH III version 418. National Oceanic and Atmospheric Administration, College Park

    Google Scholar 

  54. Umesh PA, Bhaskaran PK, Sandhya KG, Balakrishnan Nair TM (2017) An assessment on the impact of wind forcing on simulation and validation of wave spectra at coastal Puducherry, east coast of India. Ocean Eng 139:14–32. https://doi.org/10.1016/j.oceaneng.2017.04.043

    Article  Google Scholar 

  55. Vethamony P et al (2006) Wave modelling for the north Indian Ocean using MSMR analysed winds. Int J Remote Sens 27:3767–3780. https://doi.org/10.1080/01431160600675820

    Article  Google Scholar 

  56. Wu J (1982) Wind-stress coefficients over sea surface from breeze to hurricane. J Geophys Res 87:9704–9706. https://doi.org/10.1029/JC087iC12p09704

    Article  Google Scholar 

  57. Yang Z, Neary VS, Wang T, Gunawan B, Dallman AR, Wu WC (2017) A wave model test bed study for wave energy resource characterization. Renew Energy 114:132–144. https://doi.org/10.1016/j.renene.2016.12.057

    Article  Google Scholar 

  58. Young IR (1999) Seasonal variability of the global ocean wind and wave climate. Int J Climatol 19:931–950. https://doi.org/10.1002/(SICI)1097-0088(199907)19:9%3c931:AID-JOC412%3e3.0.CO;2-O

    Article  Google Scholar 

  59. Zheng CW, Pan J, Li CY (2016) Global oceanic wind speed trends. Ocean Coast Manag 129:15–24. https://doi.org/10.1016/j.ocecoaman.2016.05.001

    Article  Google Scholar 

  60. Zijlema M, van der Westhuysen AJ (2005) On convergence behaviour and numerical accuracy in stationary SWAN simulations of nearshore wind wave spectra. Coast Eng 52:237–256. https://doi.org/10.1016/j.coastaleng.2004.12.006

    Article  Google Scholar 

  61. Zijlema M, van Vledder GP, Holthuijsen LH (2012) Bottom friction and wind drag for wave models. Coast Eng 65:19–26. https://doi.org/10.1016/j.coastaleng.2012.03.002

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to everyone who supported modifications of the source code to fix the problem with the drag coefficient in SWAN v. 41.10, including (in alphabetic order) Adem Akpinar, George Lavidas, Tomoya Shimura, Gerbrant van Vledder and Marcel Zijlema. The authors are also grateful to Katherine Cox for editing the manuscript. Part of the research was supported by the Hakubi Center for Advanced Research at Kyoto University, the framework of the Integrated Research Program for Advancing Climate Models (TOUGOU Program), and JSPS Grants-in-Aid for Scientific Research—KAKENHI—supported by the Ministry of Education, Culture, Sports, Science, and Technology-Japan (MEXT).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bahareh Kamranzad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamranzad, B., Mori, N. Future wind and wave climate projections in the Indian Ocean based on a super-high-resolution MRI-AGCM3.2S model projection. Clim Dyn 53, 2391–2410 (2019). https://doi.org/10.1007/s00382-019-04861-7

Download citation

Keywords

  • Climate change
  • Wave model
  • Indian Ocean
  • SWAN
  • MRI-AGCM3.2S
  • RCP8.5