Skip to main content

Review of Australian east coast low pressure systems and associated extremes

Abstract

Intense cyclones often result in severe impacts on mid-latitude coastal regions of southeastern Australia, including those due to associated natural hazards such as extreme winds, ocean waves, storm surges, precipitation, flooding, erosion, lightning and tornadoes in some cases. These low-pressure systems, known as east coast lows (ECLs), have been examined in a wide range of different studies, with considerable variations between such studies in what they consider to be an ECL, and their findings on the characteristics of these storm systems. Here we present reviews of literature and other information such as operational forecasting approaches, which are then used to produce a comprehensive synthesis of knowledge on ECLs and associated weather and ocean extremes. This includes aspects such as their definition, formation, meteorology, climatology and drivers of variability from short-term weather time scales up to long-term historical climate trends and future projections. Australian ECLs are also considered here in relation to similar phenomena from other regions of the world. A definition based on this synthesis of knowledge is as follows: ECLs are cyclones near southeastern Australia that can be caused by both mid-latitude and tropical influences over a range of levels in the atmosphere; Intense ECLs have at least one major hazard associated with their occurrence, including extreme winds, waves, rain or flooding. Knowledge gaps are examined and used to provide recommendations for future research priorities. This study is intended to lead to improved guidance and preparedness in relation to the impacts of these storms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Alexander LV, Wang XL, Wan H, Trewin B (2011) Significant decline in storminess over southeast Australia since the late 19th century. Aust Meteorol Oceanogr J 61:23–30

    Article  Google Scholar 

  • Allen JT, Pezza AB, Black MT (2010) Explosive cyclogenesis: a global climatology comparing multiple reanalyses. J Clim 23:6468–6484. https://doi.org/10.1175/2010JCLI3437.1

    Article  Google Scholar 

  • Bell SS, Chand SS, Tory KJ, Dowdy AJ, Turville C, Ye H (2018) Projections of southern hemisphere tropical cyclone track density using CMIP5 models. Clim Dyn. https://doi.org/10.1007/s00382-018-4497-4

    Article  Google Scholar 

  • Bengtsson L, Hodges KI, Keenlyside N (2009) Will extratropical storms intensify in a warmer climate? J Clim 22(9):2276–2301. https://doi.org/10.1175/2008JCLI2678.1

    Article  Google Scholar 

  • Bjerknes J (1922) Life cycle of cyclones and the polar front theory of atmospheric circulation. Geophys Publik 3(1):1–18

    Google Scholar 

  • Black MT, Pezza AB (2013) A universal, broad-environment energy conversion signature of explosive cyclones. Geophys Res Lett 40(2):452–457

    Article  Google Scholar 

  • Bluestein HR (1993) Synoptic-dynamic meteorology in midlatitudes, vol II. Observations and theory of weather systems. Oxford University Press, Oxford

    Google Scholar 

  • Booth JF, Rieder HE, Lee DE, Kushnir Y (2015) The paths of extratropical cyclones associated with wintertime high-wind events in the northeastern United States. J Appl Meteorol Climatol 54:1871–1885. https://doi.org/10.1175/JAMC-D-14-0320.1

    Article  Google Scholar 

  • Browning SA, Goodwin ID (2013) Large-scale influences on the evolution of winter subtropical maritime cyclones affecting Australia’s east coast. Mon Weather Rev 141:2416–2431. https://doi.org/10.1175/MWR-D-12-00312.1

    Article  Google Scholar 

  • Callaghan J, Helman P (2008) Severe storms on the east coast of Australia, 1770–2008. Griffith Centre for Coastal Management, Griffith University, Gold Coast

    Google Scholar 

  • Callaghan J, Power SB (2014) Major coastal flooding in southeastern Australia 1860–2012, associated deaths and weather systems. Aust Meteorol Oceanogr J 64:183–213

    Article  Google Scholar 

  • Caruso SJ, Businger S (2006) Subtropical cyclogenesis over the central North Pacific. Weather Forecast 21:193–205

    Article  Google Scholar 

  • Catto JL (2016) Extratropical cyclone classification and its use in climate studies. Rev Geophys. https://doi.org/10.1002/2016rg000519

    Article  Google Scholar 

  • Catto JL (2018) A new method to objectively classify extratropical cyclones for climate studies: testing in the southwest Pacific region. J Clim 31(12):4683–4704

    Article  Google Scholar 

  • Catto JL, Madonna E, Joos H, Rudeva I, Simmonds I (2015) Global relationship between fronts and warm conveyor belts and the impact on extreme precipitation. J Clim 28(21):8411–8429

    Article  Google Scholar 

  • Cavicchia L, von Storch H, Gualdi S (2014) A long-term climatology of medicanes. Clim Dyn 43:1183–1195. https://doi.org/10.1007/s00382-013-1893-7

    Article  Google Scholar 

  • Cavicchia L, Dowdy A, Walsh K (2018) Energetics and dynamics of subtropical australian east coast cyclones: two contrasting cases. Mon Weather Rev 146(5):1511–1525

    Article  Google Scholar 

  • Cavicchia L, Pepler A, Dowdy A, Walsh K (2019) A physically-based climatology of Australian east coast lows occurrence and intensification. J Clim. https://doi.org/10.1175/jcli-d-18-0549.1

    Article  Google Scholar 

  • Chambers CRS, Brassington GB, Simmonds I, Walsh K (2014) Precipitation changes due to the introduction of eddy-resolved sea surface temperatures into simulations of the “Pasha Bulker” Australian east coast low of June 2007. Meteorol Atmos Phys 125:1–15. https://doi.org/10.1007/s00703-014-0318-4

    Article  Google Scholar 

  • Chambers CRS, Brassington GB, Walsh K, Simmonds I (2015) Sensitivity of the distribution of thunderstorms to sea surface temperatures in four Australian east coast lows. Meteorol Atmos Phys 127:499–517. https://doi.org/10.1007/s00703-015-0382-4

    Article  Google Scholar 

  • Chang EK, Guo Y, Xia X (2012) CMIP5 multimodel ensemble projection of storm track change under global warming. J Geophys Res Atmos. https://doi.org/10.1029/2012JD018578

    Article  Google Scholar 

  • Colle BA, Booth JF, Chang EK (2015) A review of historical and future changes of extratropical cyclones and associated impacts along the US East Coast. Curr Clim Change Rep 1(3):125–143

    Article  Google Scholar 

  • CSIRO and Bureau of Meteorology (2015) Climate Change in Australia: Technical Report. CSIRO and Bureau of Meteorology, Melbourne

    Google Scholar 

  • da Rocha RP, Reboita MS, Gozzo LF, Dutra LMM, de Jesus EM (2018) Subtropical cyclones over the oceanic basins: a review. Ann N Y Acad Sci. https://doi.org/10.1111/nyas.13927

    Article  Google Scholar 

  • DeConto RM, Pollard D (2016) Contribution of Antarctica to past and future sea-level rise. Nature 531:591

    Article  Google Scholar 

  • Di Luca A, Evans JP, Pepler A, Alexander L, Argüeso D (2015) Resolution sensitivity of cyclone climatology over eastern Australia using six reanalysis products. J Clim 28:9530–9549. https://doi.org/10.1175/JCLI-D-14-00645.1

    Article  Google Scholar 

  • Di Luca A, Evans JP, Pepler AS, Alexander LV, Argüeso D (2016) Evaluating the representation of Australian East Coast Lows in a regional climate model ensemble. J South Hemisph Earth Syst Sci 66:108–124

    Google Scholar 

  • Dias Pinto JR, Da Rocha RP (2011) The energy cycle and structural evolution of cyclones over southeastern South America in three case studies. J Geophys Res Atmos 116(D14):112

    Article  Google Scholar 

  • Dias Pinto JR, Reboita MS, Rocha RP (2013) Synoptic and dynamical analysis of subtropical cyclone Anita (2010) and its potential for tropical transition over the South Atlantic Ocean. J Geophys Res Atmos 118:10870–10883

    Article  Google Scholar 

  • Dowdy AJ (2016) Seasonal forecasting of lightning and thunderstorm activity in tropical and temperate regions of the world. Sci Rep 6:20874

    Article  Google Scholar 

  • Dowdy AJ, Catto JL (2017) Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences. Sci Rep 7:srep40359. https://doi.org/10.1038/srep40359

    Article  Google Scholar 

  • Dowdy AJ, Kuleshov Y (2014) Climatology of lightning activity in Australia: spatial and seasonal variability. Aust Meteorol Oceanogr J 64:103–108

    Article  Google Scholar 

  • Dowdy AJ, Mills GA, Timbal B (2010) Diagnosing indicators of large-scale forcing of east-coast cyclogenesis. In: IOP conference series: earth and environmental science, vol 11, no 1. IOP Publishing, p 012003

  • Dowdy AJ, Mills GA, Timbal B (2011) Large-scale indicators of Australian East Coast Lows and associated extreme weather events. CAWCR Technical Report 37, Centre for Australian Weather and Climate Research, Melbourne, p 93

  • Dowdy AJ, Mills GA, Timbal B, Wang Y (2013a) Changes in the risk of extratropical cyclones in eastern Australia. J Clim 26:1403–1417. https://doi.org/10.1175/JCLI-D-12-00192.1

    Article  Google Scholar 

  • Dowdy AJ, Mills GA, Timbal B, Griffiths M, Wang Y (2013b) Understanding rainfall projections in relation to extratropical cyclones in eastern Australia. Aust Meteorol Oceanogr J 63:355–364

    Article  Google Scholar 

  • Dowdy AJ, Mills GA, Timbal B (2013c) Large-scale diagnostics of extratropical cyclogenesis in eastern Australia. Int J Climatol 33(10):2318–2327. https://doi.org/10.1002/joc.3599

    Article  Google Scholar 

  • Dowdy AJ, Mills GA, Timbal B, Wang Y (2014) Fewer large waves projected for eastern Australia due to decreasing storminess. Nat Clim Change 4:283–286. https://doi.org/10.1038/nclimate2142

    Article  Google Scholar 

  • Dowdy AJ, Grose MR, Timbal B, Moise A, Ekström M, Bhend J, Wilson L (2015) Rainfall in Australia’s eastern seaboard: a review of confidence in projections based on observations and physical processes. Aust Meteorol Oceanogr J 65(1):107–126

    Article  Google Scholar 

  • Eady E (1949) Long waves and cyclone waves. Tellus 1:33–52. https://doi.org/10.1111/j.2153-3490.1949.tb01265.x

    Article  Google Scholar 

  • Evans JL, Braun A (2012) A climatology of subtropical cyclones in the South Atlantic. J Clim 25:7328–7340

    Article  Google Scholar 

  • Evans JP, Ji F, Lee C, Smith P, Argüeso D, Fita L (2014) Design of a regional climate modelling projection ensemble experiment—NARCliM. Geosci Model Dev 7:621–629. https://doi.org/10.5194/gmd-7-621-2014

    Article  Google Scholar 

  • Fiddes SL, Pezza AB, Barras V (2015) Synoptic climatology of extreme precipitation in alpine Australia. Int J Climatol 35:172–188. https://doi.org/10.1002/joc.3970

    Article  Google Scholar 

  • Fita L, Flaounas E (2018) Medicanes as subtropical cyclones: the December 2005 case from the perspective of surface pressure tendency diagnostics and atmospheric water budget. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3273

    Article  Google Scholar 

  • Fuenzalida HA, Sánchez R, Garreaud RD (2005) A climatology of cutoff lows in the Southern Hemisphere. J Geophys Res Atmos. https://doi.org/10.1029/2005JD005934

    Article  Google Scholar 

  • Gaertner MA, Gonzalez-Aleman JJ, Romera R, Dominguez M, Gil V, Sanchez E, Gallardo C, Miglietta MM, Walsh K, Sein D, Somot S, dell’Aquila A, Ahrens S, Colette A, Bastin S, van Meijgaard E, Nikulin G (2017) Simulation of medicanes over the Mediterranean Sea in a regional climate model ensemble: impact of ocean–atmosphere coupling and increased resolution. Clim Dyn 51:1041–1057. https://doi.org/10.1007/s00382-016-3456-1

    Article  Google Scholar 

  • Garde LA, Pezza AB, Tristram Bye JA (2010) Tropical transition of the 2001 Australian Duck. Mon Weather Rev 138(6):2038–2057

    Article  Google Scholar 

  • Godson WL (1948) A new tendency equation and its application to the analysis of surface pressure changes. J Meteorol 5(5):227–235

    Article  Google Scholar 

  • González-Alemán JJ, Valero F, Martın-Leon F, Evans JL (2015) Classification and synoptic analysis of subtropical cyclones within the northeastern Atlantic Ocean. J Clim 28:3331–3352

    Article  Google Scholar 

  • Goodwin ID, Mortlock TR, Browning S (2016) Tropical and extratropical-origin storm wave types and their influence on the East Australian longshore sand transport system under a changing climate. J Geophys Res Oceans 121:4833–4853. https://doi.org/10.1002/2016JC011769

    Article  Google Scholar 

  • Gozzo LF, da Rocha RP, Reboita MS, Sugahara S (2014) Subtropical cyclones over the southwestern South Atlantic: climatological aspects and case study. J Clim 27(22):8543–8562

    Article  Google Scholar 

  • Grieger J, Leckebusch GC, Donat MG, Schuster M, Ulbrich U (2014) Southern hemisphere winter cyclone activity under recent and future climate conditions in multi-model AOGCM simulations. Int J Climatol 34(12):3400–3416. https://doi.org/10.1002/joc.3917

    Article  Google Scholar 

  • Guerreiro SB, Fowler HJ, Barbero R, Westra S, Lenderink G, Blenkinsop S, Lewis E, Li XF (2018) Detection of continental-scale intensification of hourly rainfall extremes. Nat Clim Change 8:803–807

    Article  Google Scholar 

  • Guishard MP, Evans JL, Hart RE (2009) Atlantic subtropical storms. Part II: climatology. J Clim 22:3574–3594

    Article  Google Scholar 

  • Harley MD, Turner IL, Kinsela MA, Middleton JH, Mumford PJ, Splinter KD, Phillips MS, Simmons JA, Hanslow DJ, Short AD (2017) Extreme coastal erosion enhanced by anomalous extratropical storm wave direction. Sci Rep 7:6033. https://doi.org/10.1038/s41598-017-05792-1

    Article  Google Scholar 

  • Hart RE (2003) A cyclone phase space derived from thermal wind and thermal asymmetry. Mon Weather Rev 131:585–616. https://doi.org/10.1175/1520-0493(2003)131%3c0585:ACPSDF%3e2.0.CO;2

    Article  Google Scholar 

  • Hemer MA, Fan Y, Mori N, Semedo A, Wang XL (2013a) Projected changes in wave climate from a multi-model ensemble. Nat Clim Change 3:471–476. https://doi.org/10.1038/nclimate1791

    Article  Google Scholar 

  • Hemer MA, McInnes KL, Ranasinghe R (2013b) Projections of climate change-driven variations in the offshore wave climate off south eastern Australia. Int J Clim 33:1615–1632. https://doi.org/10.1002/joc.3537

    Article  Google Scholar 

  • Hirata H, Kawamura R, Kato M, Shinoda T (2016) Response of rapidly developing extratropical cyclones to sea surface temperature variations over the western Kuroshio-Oyashio confluence region. J Geophys Res Atmos 121:3843–3858. https://doi.org/10.1002/2015JD024391

    Article  Google Scholar 

  • Hirsch ME, DeGaetano AT, Colucci SJ (2001) An east coast winter storm climatology. J Clim 14:882–899

    Article  Google Scholar 

  • Hirschberg PA, Fritsch JM (1991) Tropopause undulations and the development of extratropical cyclones. Part I. Overview and observations from a cyclone event. Mon Weather Rev 119(2):496–517

    Article  Google Scholar 

  • Holland GJ, Lynch AH, Leslie LM (1987) Australian east-coast cyclones. Part I: synoptic overview and case study. Mon Weather Rev 115:3024–3036. https://doi.org/10.1175/1520-0493(1987)115%3c3024:AECCPI%3e2.0.CO;2

    Article  Google Scholar 

  • Hopkins LC, Holland GJ (1997) Australian heavy-rain days and associated east coast cyclones: 1958–92. J Clim 10:621–635. https://doi.org/10.1175/1520-0442(1997)010%3c0621:AHRDAA%3e2.0.CO;2

    Article  Google Scholar 

  • Hoskins BJ, Hodges KI (2002) New perspectives on the Northern Hemisphere winter storm tracks. J Atmos Sci 59(6):1041–1061

    Article  Google Scholar 

  • Hoskins BJ, Hodges KI (2005) A new perspective on Southern Hemisphere storm tracks. J Clim 18(20):4108–4129

    Article  Google Scholar 

  • Hoskins BJ, McIntyre ME, Robertson AW (1985) On the use and significance of isentropic potential vorticity maps. Q J R Meteorol Soc 111:877–946

    Article  Google Scholar 

  • Houze RA (2004) Mesoscale convective systems. Rev Geophys. https://doi.org/10.1029/2004RG000150

    Article  Google Scholar 

  • Ji F, Evans JP, Argueso D, Fita L, Di Luca A (2015) Using large-scale diagnostic quantities to investigate change in East Coast Lows. Clim Dyn 45:2443–2453. https://doi.org/10.1007/s00382-015-2481-9

    Article  Google Scholar 

  • Ji F, Pepler A, Browning S, Evans JP, Di Luca A (2017) Trends and low frequency variability of East Coast Lows in the twentieth century. J South Hemisph Earth Syst Sci. https://doi.org/10.22499/3.6801.001

    Article  Google Scholar 

  • Johnson F, White CJ, van Dijk A, Ekstrom M, Evans JP, Jakob D, Kiem AS, Leonard M, Rouillard A, Westra S (2016) Natural hazards in Australia: floods. Clim Change 139:21–35

    Article  Google Scholar 

  • Jones DA, Simmonds I (1993) A climatology of Southern Hemisphere extratropical cyclones. Clim Dyn 9:131–145. https://doi.org/10.1007/BF00209750

    Article  Google Scholar 

  • Katzfey JJ, McInnes KL (1996) GCM simulations of eastern Australian cutoff lows. J Clim 9:2337–2355

    Article  Google Scholar 

  • Kiem AS, Twomey C, Lockart N, Willgoose G, Kuczera G, Chowdhury AK, Manage NP, Zhang L (2016) Links between East Coast Lows and the spatial and temporal variability of rainfall along the eastern seaboard of Australia. J South Hemisph Earth Syst Sci 66(2):162–176

    Google Scholar 

  • Kulmar M, Lord D, Sanderson B (2005) Future directions for wave data collection in New South Wales (online). In: Walker D, Townsend MR (ed) Proceedings of Australasian conference on coasts and ports: coastal living—living coast, pp 167–172

  • Leslie LM, Speer MS (1998) Short-range ensemble forecasting of explosive Australian east coast cyclogenesis. Weather Forecast 13(3):822–832

    Article  Google Scholar 

  • Leslie LM, Holland GJ, Lynch AH (1987) Australian east-coast cyclones. Part II: numerical modeling study. Mon Weather Rev 115:3037–3054. https://doi.org/10.1175/1520-0493(1987)115%3c3037:AECCPI%3e2.0.CO;2

    Article  Google Scholar 

  • Li M, Woollings T, Hodges K, Masato G (2014) Extratropical cyclones in a warmer, moister climate: a recent Atlantic analogue. Geophys Res Lett 41(23):8594–8601. https://doi.org/10.1002/2014GL062186

    Article  Google Scholar 

  • Lim E-P, Simmonds I (2007) Southern hemisphere winter extratropical cyclone characteristics and vertical organization observed with the ERA-40 data in 1979–2001. J Clim 20:2675–2690. https://doi.org/10.1175/JCLI4135.1

    Article  Google Scholar 

  • Lindzen RS, Farrell F (1980) A simple approximate result for the maximum growth rate of baroclinic instabilities. J Atmos Sci 37:1648–1654

    Article  Google Scholar 

  • Louis S (2018) A warm-front triggered nocturnal tornado outbreak near Kiama, NSW, Australia. J South Hemisph Earth Syst Sci. https://doi.org/10.22499/3.6801.008

    Article  Google Scholar 

  • Maier-Gerber M, Pantillon F, Di Muzio E, Riemer M, Fink AH, Knippertz P (2017) Birth of the Biscane. Weather 72(8):236–241

    Article  Google Scholar 

  • Majodina M, Jury MR (1996) Composite winter cyclones south of Africa: evolution during eastward transit over the Agulhas warm pool. S Afr J Mar Sci 17(1):241–252

    Article  Google Scholar 

  • Market PS, Halcomb CE, Ebert RL (2002) A climatology of thundersnow events over the contiguous United States. Weather Forecast 17:1290–1295. https://doi.org/10.1175/1520-0434(2002)017%3c1290:ACOTEO%3e2.0.CO;2

    Article  Google Scholar 

  • Maue RN, Hart RE (2006) Warm seclusion cyclone climatology. In: 27th Conference on hurricanes and tropical meteorology, Monterey. http://ams.confex.com/ams/27Hurricanes/techprogram/paper_108776.htm

  • Mauk RG, Hobgood JS (2012) Tropical cyclone formation in environments with cool SST and high wind shear over the northeastern Atlantic Ocean. Weather Forecast 27:1433–1448

    Article  Google Scholar 

  • McInnes KL, Hess GD (1992) Modifications to the Australian region limited area model and their impact on an east coast low event. Aust Meteorol Mag 40(1):21–31

    Google Scholar 

  • McInnes KL, Hubbert GD (2001) The impact of eastern Australian cut-off lows on coastal sea levels. Meteorol Appl 8:229–243. https://doi.org/10.1017/S1350482701002110

    Article  Google Scholar 

  • McInnes KL, Leslie LM, McBride JL (1992) Numerical simulation of cut-off lows on the Australian east coast: sensitivity to sea-surface temperature. Int J Climatol 12:783–795. https://doi.org/10.1002/joc.3370120803

    Article  Google Scholar 

  • McInnes KL, Abbs DJ, Hubbert GD, Oliver SE (2002) A numerical modelling study of coastal flooding. Meteorol Atmos Phys 80:217–233

    Article  Google Scholar 

  • McInnes KL, Church JA, Monselesan D, Hunter JR, O’Grady JG, Haigh ID, Zhang X (2015) Information for Australian impact and adaptation planning in response to sea-level rise. Aust Meteorol Oceanogr J 65:127–149

    Article  Google Scholar 

  • McInnes KL, White CJ, Haigh ID, Hemer MA, Hoeke RK, Holbrook NJ, Kiem AS, Oliver ECJ, Ranasinghe R, Walsh KJE, Westra S, Cox R (2016) Natural hazards in Australia: sea level and coastal extremes. Clim Change. https://doi.org/10.1007/s10584-016-1647-8

    Article  Google Scholar 

  • Miglietta M, Laviola S, Malvaldi A, Conte D, Levizzani V, Price C (2013) Analysis of tropical-like cyclones over the Mediterranean Sea through a combined modeling and satellite approach. Geophys Res Lett 40:2400–2405

    Article  Google Scholar 

  • Mills GA (2001) Mesoscale cyclogenesis in reversed shear—the 1998 Sydney-Hobart yacht race storm. Aust Meteorol Mag 50:29–52

    Google Scholar 

  • Mills GA, Webb R, Davidson NE, Kepert J, Seed A, Abbs D (2010) The Pasha Bulker east coast low of 8 June 2007. CAWCR Technical Report 23. Centre for Australian Weather and Climate Research, Melbourne

    Google Scholar 

  • Mortlock TR, Goodwin ID (2015) Directional wave climate and power variability along the Southeast Australian shelf. Cont Shelf Res 98:36–53. https://doi.org/10.1016/j.csr.2015.02.007

    Article  Google Scholar 

  • Ndarana T, Waugh DW (2010) The link between cut-off lows and Rossby wave breaking in the Southern Hemisphere. Q J R Meteorol Soc 136(649):869–885

    Article  Google Scholar 

  • Nelson J, He R (2012) Effect of the Gulf Stream on winter extratropical cyclone outbreaks. Atmos Sci Lett 13:311–316. https://doi.org/10.1002/asl.400

    Article  Google Scholar 

  • Neu U, Akperov MG, Bellenbaum N, Benestad R, Blender R, Caballero R, Cocozza A, Dacre HF, Feng Y, Fraedrich K, Grieger J (2013) IMILAST: a community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull Am Meteorol Soc 94:529–547. https://doi.org/10.1175/BAMS-D-11-00154.1

    Article  Google Scholar 

  • Nguyen H, Lucas C, Evans A, Timbal B, Hanson L (2015) Expansion of the Southern Hemisphere Hadley cell in response to greenhouse gas forcing. J Clim 28:8067–8077. https://doi.org/10.1175/JCLI-D-15-0139.1

    Article  Google Scholar 

  • Otkin JA, Martin JE (2004) A synoptic climatology of the subtropical Kona storm. Mon Weather Rev 132:1502–1517. https://doi.org/10.1175/1520-0493(2004)132%3c1502:ASCOTS%3e2.0.CO;2

    Article  Google Scholar 

  • Pepler AS, Rakich CS (2010) Extreme inflow events and synoptic forcing in Sydney catchments. IOP Conf Ser Earth Environ Sci 11:012010. https://doi.org/10.1088/1755-1315/11/1/012010

    Article  Google Scholar 

  • Pepler A, Coutts-Smith A, Timbal B (2014) The role of East Coast Lows on rainfall patterns and inter-annual variability across the East Coast of Australia. Int J Climatol 34:1011–1021. https://doi.org/10.1002/joc.3741

    Article  Google Scholar 

  • Pepler AS, Di Luca A, Ji F, Alexander LF, Evans JP, Sherwood SC (2015) Impact of identification method on the inferred characteristics and variability of Australian east coast lows. Mon Weather Rev 143:864–877. https://doi.org/10.1175/MWR-D-14-00188.1

    Article  Google Scholar 

  • Pepler AS, Alexander LV, Evans JP, Sherwood SC (2016a) The influence of local sea surface temperatures on Australian east coast cyclones. J Geophys Res Atmos 121:13352–13363. https://doi.org/10.1002/2016JD025495

    Article  Google Scholar 

  • Pepler AS, Di Luca A, Ji F, Alexander LV, Evans JP, Sherwood SC (2016b) Projected changes in east Australian midlatitude cyclones during the 21st century. Geophys Res Lett 43:334–340. https://doi.org/10.1002/2015GL067267

    Article  Google Scholar 

  • Pepler AS, Fong J, Alexander LV (2016c) Australian east coast mid-latitude cyclones in the 20th Century Reanalysis ensemble. Int J Climatol 37:2182–2192. https://doi.org/10.1002/joc.4812

    Article  Google Scholar 

  • Pepler AS, Alexander LV, Evans JP, Sherwood SC (2017) The influence of topography on midlatitude cyclones on Australia’s east coast. J Geophys Res Atmos 122:9173–9184. https://doi.org/10.1002/2017JD027345

    Article  Google Scholar 

  • Pepler AS, Di Luca A, Evans JP (2018) Independently assessing the representation of midlatitude cyclones in high-resolution reanalyses using satellite observed winds. Int J Climatol 38:1314–1327. https://doi.org/10.1002/joc.5245

    Article  Google Scholar 

  • Pezza AB, Garde LA, Veiga JAP, Simmonds I (2014) Large scale features and energetics of the hybrid subtropical low ‘Duck’ over the Tasman Sea. Clim Dyn 42(1–2):453–466

    Article  Google Scholar 

  • Pinto JG, Ulbrich S, Economou T, Stephenson DP, Karremann MK, Shaffrey LC (2016) Robustness of serial clustering of extratropical cyclones to the choice of tracking method. Tellus A 68:32204. https://doi.org/10.3402/tellusa.v68.32204

    Article  Google Scholar 

  • Pook MJ, Risbey JS, McIntosh PC, Ummenhofer CC, Marshall AG, Meyers GA (2013) The seasonal cycle of blocking and associated physical mechanisms in the Australian region and relationship with rainfall. Mon Weather Rev 141(12):4534–4553

    Article  Google Scholar 

  • Power SB, Callaghan J (2016) Variability in severe coastal flooding, associated storms, and death tolls in southeastern Australia since the mid-nineteenth century. J Appl Meteorol Climatol 55:1139–1149. https://doi.org/10.1175/JAMC-D-15-0146.1

    Article  Google Scholar 

  • Public Works Department (PWD) (1985) Elevated coastal levels. Storms affecting N.S.W. coast 1880–1980. Weatherex Meteorological Services, Report 86026

  • Quinting JF, Catto JL, Reeder MJ (2019a) Synoptic climatology of hybrid cyclones in the Australian region. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3431

    Article  Google Scholar 

  • Quinting JF, Reeder MJ, Catto JL (2019b) The intensity and motion of hybrid cyclones in the Australian region in a composite potential vorticity framework. Q J R Meteorol Soc 145:273–287

    Article  Google Scholar 

  • Risbey JS, Pook MJ, McIntosh PC, Wheeler MC, Hendon HH (2009) On the remote drivers of rainfall variability in Australia. Mon Weather Rev 137(10):3233–3253

    Article  Google Scholar 

  • Sanders F, Gyakum JR (1980) Synoptic-dynamic climatology of the “Bomb”. Mon Weather Rev 108:1589–1606. https://doi.org/10.1175/1520-0493(1980)108%3c1589:SDCOT%3e2.0.CO;2

    Article  Google Scholar 

  • Schultz DM, Keyser D, Bosart LF (1998) The effect of large-scale flow on low-level frontal structure and evolution in mid-latitude cyclones. Mon Weather Rev 126:1767–1791

    Article  Google Scholar 

  • Shand T, Goodwin ID, Mole MA, Carley JT, Browning SA, Coghlan IR, Harley MD, Peirson LW (2011) NSW coastal inundation hazard study: coastal storms and extreme wave events. UNSW Australia Water Research Laboratory, Technical Report 16

  • Shapiro MA, Keyser DA (1990) Fronts, jet streams and the tropopause. In: Newton CW, Holopainen EO (eds) Extratropical cyclones. American Meteorological Society, Boston, MA, pp 167–191

    Chapter  Google Scholar 

  • Sharmila S, Walsh KJE (2018) Recent poleward shift of tropical cyclone formation linked to Hadley cell expansion. Nat Clim Change 8:730–736

    Article  Google Scholar 

  • Short AD, Trenaman NL (1992) Wave climate of the Sydney region, an energetic and highly variable ocean wave regime. Mar Freshw Res 43:765–791. https://doi.org/10.1071/mf9920765

    Article  Google Scholar 

  • Simpson RH (1952) Evolution of the Kona storm a subtropical cyclone. J Meteorol 9(1):24–35

    Article  Google Scholar 

  • Sinclair MR (2002) Extratropical transition of southwest Pacific tropical cyclones. Part I: climatology and mean structure changes. Mon Weather Rev 130:590–609

    Article  Google Scholar 

  • Sinclair MR, Revell MJ (2000) Classification and composite diagnosis of extratropical cyclogenesis events in the southwest Pacific. Mon Weather Rev 128(4):1089–1105

    Article  Google Scholar 

  • Speer MS, Wiles P, Pepler A (2009) Low pressure systems off the New South Wales coast and associated hazardous weather: establishment of a database. Aust Meteorol Oceanogr J 58:29–39

    Article  Google Scholar 

  • Stocker T (ed) (2014) Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Timm OE, Takahashi M, Giambelluca TW, Diaz HF (2013) On the relation between large-scale circulation pattern and heavy rain events over the Hawaiian Islands: recent trends and future changes. J Geophys Res Atmos 118(10):4129–4141

    Article  Google Scholar 

  • Ulbrich U, Leckebusch GC, Pinto JG (2009) Extra-tropical cyclones in the present and future climate: a review. Theor Appl Climatol 96(1–2):117–131

    Article  Google Scholar 

  • USGCRP (2017) Climate Science Special Report: Fourth National Climate Assessment, vol I. Global Change Research Program, USA. https://doi.org/10.7930/J0J964J6

    Book  Google Scholar 

  • Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proc Natl Acad Sci 106:21527–21532

    Article  Google Scholar 

  • Walsh K, Giorgi F, Coppola E (2014) Mediterranean warm-core cyclones in a warmer world. Clim Dyn 42:1053–1066

    Article  Google Scholar 

  • Walsh K, McInnes K, Holmes J, Schuster S, Richter H, Evans JP, Di Luca A, Warren RA (2016) Natural hazards in Australia: storms, wind and hail. Clim Change 139:55–67. https://doi.org/10.1007/s10584-016-1737-7

    Article  Google Scholar 

  • Willison J, Robinson WA, Lackmann GM (2013) The importance of resolving mesoscale latent heating in the North Atlantic storm track. J Atmos Sci 70(7):2234–2250. https://doi.org/10.1175/JAS-D-12-0226.1

    Article  Google Scholar 

  • Wu W, McInnes KL, O’Grady J, Hoeke RK, Leonard M, Westra S (2018) Mapping dependence between extreme rainfall and storm surge. JGR Oceans. https://doi.org/10.1002/2017jc013472

    Article  Google Scholar 

  • Yanase W, Niino H (2015) Idealized numerical experiments on cyclone development in the tropical, subtropical, and extratropical environments. J Atmos Sci 72(9):3699–3714

    Article  Google Scholar 

  • Yanase W, Niino H, Hodges K, Kitabatake N (2014) Parameter spaces of environmental fields responsible for cyclone development from tropics to extratropics. J Clim 27:652–671. https://doi.org/10.1175/JCLI-D-13-00153.1

    Article  Google Scholar 

  • Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett. https://doi.org/10.1029/2005GL023684

    Article  Google Scholar 

  • Zhang X, Church JA, Monselesan D, McInnes KL (2017a) Sea level projections for the Australian region in the 21st century. Geophys Res Lett 44:8481–8491

    Article  Google Scholar 

  • Zhang X, Church JA, Monselesan D, Legresy B (2017b) Regional 21st century sea level projections for the NSW coast. CSIRO Report. Prepared for the NSW Environmental Trust

  • Zillman JW (1962) Report on tornado investigation—Port Macquarie, July 1962. Aust Meteorol Mag 10(39):28–48

    Google Scholar 

  • Zovko-Rajak D, Tory K, Fawcett R, Kepert J, Rikus L (2018) High-resolution ensemble prediction of the Australian East Coast Low of April 2015. J South Hemisph Earth Syst Sci (in press)

  • Zscheischler J, Westra S, Hurk BJ, Seneviratne SI, Ward PJ, Pitman A, Agha Kouchak A, Bresch DN, Leonard M, Wahl T, Zhang X (2018) Future climate risk from compound events. Nat Clim Change 14(1):469–477. https://doi.org/10.1038/s41558-018-0156-3

    Article  Google Scholar 

Download references

Acknowledgements

This paper was produced with funding from the Earth Systems and Climate Change Hub of Australia’s National Environmental Science Program (NESP). Alejandro Di Luca is supported by an Australian Research Council (ARC) Discovery Early Career Researcher Grant (DE170101191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Dowdy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dowdy, A.J., Pepler, A., Di Luca, A. et al. Review of Australian east coast low pressure systems and associated extremes. Clim Dyn 53, 4887–4910 (2019). https://doi.org/10.1007/s00382-019-04836-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-019-04836-8

Keywords

  • Cyclones
  • Extreme
  • Weather
  • Climate
  • Hazards