Direct and semi-direct radiative effect of North African dust in present and future regional climate simulations

Abstract

This study explores the direct and semi-direct radiative effect of North African dust in the present and future climate using the regional climate model RegCM4. The simulations cover a historical decade extending from December 1999 to November 2009 and a future decade that spans from December 2089 to November 2099 under the Representative Concentration Pathway 4.5 (RCP4.5), without considering land-cover/land-use changes. For each time-slice a set of two experiments was conducted, namely the “Control”, in which dust is radiatively inactive and the “Feedback”, in which dust interacts with shortwave and longwave radiation. The impact of North African dust on the regional radiative balance is assessed by comparing the “Feedback” and the “Control” experiments during the historical period. The results indicate that the combined effect of dust Direct + Semi-direct Radiative Effect (DSRE) on the shortwave is − 13.8 W m−2 and − 10.7 W m−2 over the Sahel and the Sahara, respectively. The Direct Radiative Effect (DRE) dominates over the Semi-direct Radiative Effect (SRE) in both winter and summer, although during summer over some parts of the desert the SRE in the longwave spectrum accounts for almost 50% of the DSRE. Part of this is due to a noteworthy statistically significant increase of clouds that reaches values up to 3% and stretches across the eastern and western Sahara desert. Dust DSRE intensifies moderately in the future period (− 15.8 W m−2 and − 11.0 W m−2), while its spatial distribution remains the same, suggesting that the effect of climate change in the atmosphere will not alter the radiative effect of dust over North Africa considerably. When taking into account the dust radiative feedback in regional climate simulations the maximum temperature is altered by − 0.2/− 0.2 °C and − 0.3/− 0.6 °C over the Sahel and Sahara regions, respectively, during the summer/winter period, mainly as a result of changes in the shortwave radiative balance. On the contrary, the minimum temperature increases, since it is mostly controlled by the longwave radiation emitted from the Earth’s surface. In the future period the near surface air temperature increases by 1.5–2.5 °C and the fine dust column burden increases by + 4% to + 8% in comparison to the historical period, mainly due to the RCP4.5 forcing. When the dust feedback on climate is active in future simulations it can decrease the summer daily maximum temperature by 0.3 °C over Sahel, and decrease or increase it locally in Sahara by up to 0.2 °C. Prior to the Feedback-Control analysis an extensive evaluation has been conducted for dust optical depth, dust extinction, near surface air temperature and cloud fraction cover using the LIVAS, CRU and CM SAF datasets.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Abdelkader M, Metzger S, Steil B et al (2016) Chemical aging of atmospheric mineral dust during transatlantic transport. Atmos Chem Phys Discuss. https://doi.org/10.5194/acp-2016-470

    Article  Google Scholar 

  2. Ackerman AS (2000) Reduction of tropical cloudiness by soot. Science 288:1042–1047. https://doi.org/10.1126/science.288.5468.1042albrecht

    Article  Google Scholar 

  3. Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245(4923):1227–1230. https://doi.org/10.1126/science.245.4923.1227

    Article  Google Scholar 

  4. Alexandri G, Georgoulias AK, Zanis P et al (2015) On the ability of RegCM4 regional climate model to simulate surface solar radiation patterns over Europe: an assessment using satellite-based observations. Atmos Chem Phys 15:13195–13216. https://doi.org/10.5194/acp-15-13195-2015

    Article  Google Scholar 

  5. Alexandri G, Georgoulias AK, Meleti C et al (2017) A high resolution satellite view of surface solar radiation over the climatically sensitive region of Eastern Mediterranean. Atmos Res 188:107–121. https://doi.org/10.1016/j.atmosres.2016.12.015

    Article  Google Scholar 

  6. Amiridis V, Wandinger U, Marinou E et al (2013) Optimizing CALIPSO Saharan dust retrievals. Atmos Chem Phys 13:12089–12106. https://doi.org/10.5194/acp-13-12089-2013

    Article  Google Scholar 

  7. Amiridis V, Marinou E, Tsekeri A et al (2015) LIVAS: a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET. Atmos Chem Phys 15:7127–7153. https://doi.org/10.5194/acp-15-7127-2015

    Article  Google Scholar 

  8. Aoki T, Tanaka TY, Uchiyama A et al (2005) Sensitivity experiments of direct radiative forcing caused by mineral dust simulated with a chemical transport model. J Meteorol Soc Japan 83A:315–331

    Article  Google Scholar 

  9. Basart S, Pérez C, Nickovic S et al (2012) Development and evaluation of the BSC-DREAM8b dust regional model over Northern Africa, the Mediterranean and the Middle East. Tellus B Chem Phys Meteorol 64:18539. https://doi.org/10.3402/tellusb.v64i0.18539

    Article  Google Scholar 

  10. Benas N, Finkensieper S, Stengel M et al (2017) The MSG-SEVIRI-based cloud property data record CLAAS-2. Earth Syst Sci Data 9:415–434. https://doi.org/10.5194/essd-9-415-2017

    Article  Google Scholar 

  11. Brioude J, Cooper OR, Feingold G et al (2009) Effect of biomass burning on marine stratocumulus clouds off the California coast. Atmos Chem Phys Discuss 9:14529–14570. https://doi.org/10.5194/acpd-9-14529-2009

    Article  Google Scholar 

  12. Choobari OA, Zawar-Reza P, Sturman A (2014) The global distribution of mineral dust and its impacts on the climate system: a review. Atmos Res 138:152–165. https://doi.org/10.1016/j.atmosres.2013.11.007

    Article  Google Scholar 

  13. Cziczo DJ, Froyd KD, Hoose C et al (2013) Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science (80-) 340:1320–1324. https://doi.org/10.1126/science.1234145

    Article  Google Scholar 

  14. Das S, Dey S, Dash SK et al (2015) Dust aerosol feedback on the Indian summer monsoon: sensitivity to absorption property. J Geophys Res Atmos 120:9642–9652. https://doi.org/10.1002/2015JD023589

    Article  Google Scholar 

  15. de Wrachien D, Ragab R, Giordano A (2006) Climate change, land degradation, and desertification in the mediterranean environment. Desertification in the Mediterranean region. A security issue. Kluwer Academic Publishers, Dordrecht, pp 353–371

    Google Scholar 

  16. Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2329. https://doi.org/10.1175/1520-0469(1991)048%3c2313:ASFRCC%3e2.0.CO;2

    Article  Google Scholar 

  17. Evan AT (2018) Surface winds and dust biases in climate models. Geophys Res Lett 45:1079–1085. https://doi.org/10.1002/2017GL076353

    Article  Google Scholar 

  18. Evan AT, Flamant C, Fiedler S, Doherty O (2014) An analysis of aeolian dust in climate models. Geophys Res Lett 41:5996–6001. https://doi.org/10.1002/2014GL060545

    Article  Google Scholar 

  19. Evan AT, Flamant C, Gaetani M, Guichard F (2016) The past, present and future of African dust. Nature 531:493–495. https://doi.org/10.1038/nature17149

    Article  Google Scholar 

  20. Georgoulias AK, Alexandri G, Kourtidis KA et al (2016) Spatiotemporal variability and contribution of different aerosol types to the aerosol optical depth over the Eastern Mediterranean. Atmos Chem Phys 16:13853–13884. https://doi.org/10.5194/acp-16-13853-2016

    Article  Google Scholar 

  21. Georgoulias AK, Tsikerdekis A, Amiridis V et al (2018) A 3-D evaluation of the MACC reanalysis dust product over Europe, northern Africa and Middle East using CALIOP/CALIPSO dust satellite observations. Atmos Chem Phys 18:8601–8620. https://doi.org/10.5194/acp-18-8601-2018

    Article  Google Scholar 

  22. Giorgi F, Xunqiang B, Qian Y (2002) Direct radiative forcing and regional climatic effects of anthropogenic aerosols over East Asia: a regional coupled climate–chemistry/aerosol model study. J Geophys Res 107:4439. https://doi.org/10.1029/2001JD001066

    Article  Google Scholar 

  23. Giorgi F, Coppola E, Solmon F et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29. https://doi.org/10.3354/cr01018

    Article  Google Scholar 

  24. Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787. https://doi.org/10.1175/1520-0493(1993)121%3c0764:PEOAUB%3e2.0.CO;2

    Article  Google Scholar 

  25. Hansell RA, Tsay SC, Ji Q et al (2010) An assessment of the surface longwave direct radiative effect of airborne Saharan dust during the NAMMA field campaign. J Atmos Sci 67:1048–1065. https://doi.org/10.1175/2009jas3257.1

    Article  Google Scholar 

  26. Hansen J (2005) Efficacy of climate forcings. J Geophys Res 110:D18104. https://doi.org/10.1029/2005JD005776

    Article  Google Scholar 

  27. Hansen J, Sato M, Lacis A, Ruedy R (1997) The missing climate forcing. Philos Trans R Soc B Biol Sci 352:231–240. https://doi.org/10.1098/rstb.1997.0018

    Article  Google Scholar 

  28. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642. https://doi.org/10.1002/joc.3711

    Article  Google Scholar 

  29. Helmert J, Heinold B, Tegen I et al (2007) On the direct and semidirect effects of Saharan dust over Europe: a modeling study. J Geophys Res Atmos. https://doi.org/10.1029/2006jd007444

    Article  Google Scholar 

  30. Hill AA, Dobbie S (2008) The impact of aerosols on non-precipitating marine stratocumulus. II: the semi-direct effect. Q J R Meteorol Soc 134:1155–1165. https://doi.org/10.1002/qj.277

    Article  Google Scholar 

  31. Holtslag AAM, De Bruijn EIF, Pan H-L (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575. https://doi.org/10.1175/1520-0493(1990)118%3c1561:AHRAMT%3e2.0.CO;2

    Article  Google Scholar 

  32. Huneeus N, Schulz M, Balkanski Y et al (2011) Global dust model intercomparison in AeroCom phase I. Atmos Chem Phys 11:7781–7816. https://doi.org/10.5194/acp-11-7781-2011

    Article  Google Scholar 

  33. Intergovernmental Panel on Climate Change (ed) (2014) Climate change 2013—the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  34. Ji Z, Wang G, Pal JS, Yu M (2016) Potential climate effect of mineral aerosols over West Africa. Part I: model validation and contemporary climate evaluation. Clim Dyn 46:1223–1239. https://doi.org/10.1007/s00382-015-2641-y

    Article  Google Scholar 

  35. Ji Z, Wang G, Yu M, Pal JS (2018) Potential climate effect of mineral aerosols over West Africa: part II—contribution of dust and land cover to future climate change. Clim Dyn 50:2335–2353. https://doi.org/10.1007/s00382-015-2792-x

    Article  Google Scholar 

  36. Johnson BT, Shine KP, Forster PM (2004) The semi-direct aerosol effect: impact of absorbing aerosols on marine stratocumulus. Q J R Meteorol Soc 130:1407–1422. https://doi.org/10.1256/qj.03.61

    Article  Google Scholar 

  37. Kain JS, Fritsch JM (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47:2784–2802. https://doi.org/10.1175/1520-0469(1990)047%3c2784:AODEPM%3e2.0.CO;2

    Article  Google Scholar 

  38. Karydis VA, Kumar P, Barahona D et al (2011) On the effect of dust particles on global cloud condensation nuclei and cloud droplet number. J Geophys Res Atmos 116:D23204. https://doi.org/10.1029/2011jd016283

    Article  Google Scholar 

  39. Kasibhatla P, Chameides WL, John JS (1997) A three-dimensional global model investigation of seasonal variations in the atmospheric burden of anthropogenic sulfate aerosols. J Geophys Res Atmos 102:3737–3759. https://doi.org/10.1029/96JD03084

    Article  Google Scholar 

  40. Katragkou E, García-Díez M, Vautard R et al (2015) Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble. Geosci Model Dev 8:603–618. https://doi.org/10.5194/gmd-8-603-2015

    Article  Google Scholar 

  41. Kiehl JT, Hack JJ, Bonan GB et al (1996) Description of the NCAR community climate model (CCM3). National Center for Atmospheric Research, Boulder

    Google Scholar 

  42. Kinne S (2003) Monthly averages of aerosol properties: a global comparison among models, satellite data, and AERONET ground data. J Geophys Res 108:4634. https://doi.org/10.1029/2001JD001253

    Article  Google Scholar 

  43. Koch D, Del Genio AD (2010) Black carbon semi-direct effects on cloud cover: review and synthesis. Atmos Chem Phys 10:7685–7696. https://doi.org/10.5194/acp-10-7685-2010

    Article  Google Scholar 

  44. Kok JF (2011) A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle. Proc Natl Acad Sci USA 108:1016–1021. https://doi.org/10.1073/pnas.1014798108

    Article  Google Scholar 

  45. Komkoua Mbienda AJ, Tchawoua C, Vondou DA et al (2017) Impact of anthropogenic aerosols on climate variability over Central Africa by using a regional climate model. Int J Climatol 37:249–267. https://doi.org/10.1002/joc.4701

    Article  Google Scholar 

  46. Konare A, Zakey AS, Solmon F et al (2008) A regional climate modeling study of the effect of desert dust on the West African monsoon. J Geophys Res Atmos 113:1–15. https://doi.org/10.1029/2007JD009322

    Article  Google Scholar 

  47. Kosmas CS, Danalatos NG (1994) Climate change, desertification and the Mediterranean region. In: Rounsevell MDA, Loveland PJ (eds) Soil responses to climate change. NATO ASI Series (Series I: Global Environmental Change), vol 23. Springer, Berlin, pp 25–38. https://doi.org/10.1007/978-3-642-79218-2_3

    Google Scholar 

  48. Lau K-M, Kim K-M (2006) Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys Res Lett 33:L21810. https://doi.org/10.1029/2006GL027546

    Article  Google Scholar 

  49. Lau KM, Kim K-M, Sud YC, Walker GL (2010) A GCM study of the response of the water cycle of West Africa and atlantic to saharan dust radiative forcing. Ann Geophys 27:4023–4037. https://doi.org/10.5194/angeo-27-4023-2009

    Article  Google Scholar 

  50. Liao H, Seinfeld JH (1998) Radiative forcing by mineral dust aerosols: sensitivity to key variables. J Geophys Res Atmos 103:31637–31645. https://doi.org/10.1029/1998JD200036

    Article  Google Scholar 

  51. Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737. https://doi.org/10.5194/acp-5-715-2005

    Article  Google Scholar 

  52. Mahowald NM, Luo C (2003) A less dusty future? Geophys Res Lett. https://doi.org/10.1029/2003gl017880

    Article  Google Scholar 

  53. Mahowald NM, Muhs DR, Levis S et al (2006) Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J Geophys Res Atmos. https://doi.org/10.1029/2005jd006653

    Article  Google Scholar 

  54. Marinou E, Amiridis V, Binietoglou I et al (2017) Three-dimensional evolution of Saharan dust transport towards Europe based on a 9-year EARLINET-optimized CALIPSO dataset. Atmos Chem Phys 17:5893–5919. https://doi.org/10.5194/acp-17-5893-2017

    Article  Google Scholar 

  55. Miller RL, Tegen I (1998) Climate response to soil dust aerosols. J Clim 11:3247–3267. https://doi.org/10.1175/1520-0442(1998)011%3c3247:CRTSDA%3e2.0.CO;2

    Article  Google Scholar 

  56. Miller RL, Cakmur RV, Perlwitz J et al (2006) Mineral dust aerosols in the NASA Goddard Institute for Space Sciences ModelE atmospheric general circulation model. J Geophys Res 111:D06208. https://doi.org/10.1029/2005JD005796

    Article  Google Scholar 

  57. Mlawer EJ, Clough SA (1997) On the extension of rapid radiative transfer model to the shortwave region longwave method. U.S. Department of Energy, CONF-9603149

  58. Mlawer EJ, Taubman SJ, Brown PD et al (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663. https://doi.org/10.1029/97JD00237

    Article  Google Scholar 

  59. Myhre G, Shindell D, Bréon F-M et al (2013) Anthropogenic and natural radiative forcing. In: Intergovernmental Panel on Climate Change (ed) Climate change 2013—the physical science basis. Cambridge University Press, Cambridge, pp 659–740

    Google Scholar 

  60. Nabat P, Solmon F, Mallet M et al (2012) Dust emission size distribution impact on aerosol budget and radiative forcing over the Mediterranean region: a regional climate model approach. Atmos Chem Phys 12:10545–10567. https://doi.org/10.5194/acp-12-10545-2012

    Article  Google Scholar 

  61. Nabat P, Somot S, Mallet M et al (2014) Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a coupled regional climate system model. Clim Dyn 44:1127–1155. https://doi.org/10.1007/s00382-014-2205-6

    Article  Google Scholar 

  62. Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res Atmos 105:29579–29594. https://doi.org/10.1029/2000JD900415

    Article  Google Scholar 

  63. Proestakis E, Amiridis V, Marinou E et al (2017) 9-Year spatial and temporal evolution of desert dust aerosols over South-East Asia as revealed by CALIOP. Atmos Chem Phys Discuss. https://doi.org/10.5194/acp-2017-797

    Article  Google Scholar 

  64. Qian Y, Giorgi F, Huang Y et al (2001) Regional simulation of anthropogenic sulfur over East Asia and its sensitivity to model parameters. Tellus B 53:171–191. https://doi.org/10.1034/j.1600-0889.2001.d01-14.x

    Article  Google Scholar 

  65. Ramanathan V, Downey P (1986) A nonisothermal emissivity and absorptivity formulation for water vapor. J Geophys Res 91:8649. https://doi.org/10.1029/JD091iD08p08649

    Article  Google Scholar 

  66. Rosenfeld D, Rudich Y, Lahav R (2001) Desert dust suppressing precipitation: a possible desertification feedback loop. Proc Natl Acad Sci 98:5975–5980. https://doi.org/10.1073/pnas.101122798

    Article  Google Scholar 

  67. Schultze M, Rockel B (2018) Direct and semi-direct effects of aerosol climatologies on long-term climate simulations over Europe. Clim Dyn 50:3331–3354. https://doi.org/10.1007/s00382-017-3808-5

    Article  Google Scholar 

  68. Skibba R (2016) Climate-change study raises spectre of advancing Mediterranean desert. Nature 1:1. https://doi.org/10.1038/nature.2016.20894

    Article  Google Scholar 

  69. Sokolik IN, Toon OB (1999) Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J Geophys Res Atmos 104:9423–9444. https://doi.org/10.1029/1998JD200048

    Article  Google Scholar 

  70. Sokolik IN, Winker DM, Bergametti G et al (2001) Introduction to special section: outstanding problems in quantifying the radiative impacts of mineral dust. J Geophys Res Atmos 106:18015–18027. https://doi.org/10.1029/2000JD900498

    Article  Google Scholar 

  71. Solmon F, Giorgi F, Liousse C (2006) Aerosol modelling for regional climate studies: application to anthropogenic particles and evaluation over a European/African domain. Tellus B 58:51–72. https://doi.org/10.1111/j.1600-0889.2005.00155.x

    Article  Google Scholar 

  72. Solmon F, Mallet M, Elguindi N et al (2008) Dust aerosol impact on regional precipitation over western Africa, mechanisms and sensitivity to absorption properties. Geophys Res Lett 35:L24705. https://doi.org/10.1029/2008GL035900

    Article  Google Scholar 

  73. Solmon F, Elguindi N, Mallet M (2012) Radiative and climatic effects of dust over West Africa, as simulated by a regional climate model. Clim Res 52:97–113. https://doi.org/10.3354/cr01039

    Article  Google Scholar 

  74. Spyrou C, Kallos G, Mitsakou C et al (2013) Modeling the radiative effects of desert dust on weather and regional climate. Atmos Chem Phys 13:5489–5504. https://doi.org/10.5194/acp-13-5489-2013

    Article  Google Scholar 

  75. Stengel MS, Kniffka AK, Meirink JFM et al (2014) CLAAS: the CM SAF cloud property data set using SEVIRI. Atmos Chem Phys 14:4297–4311. https://doi.org/10.5194/acp-14-4297-2014

    Article  Google Scholar 

  76. Stephens GL, Wood NB, Pakula LA (2004) On the radiative effects of dust on tropical convection. Geophys Res Lett 31:1–4. https://doi.org/10.1029/2004GL021342

    Article  Google Scholar 

  77. Tegen I, Werner M, Harrison SP, Kohfeld KE (2004) Relative importance of climate and land use in determining present and future global soil dust emission. Geophys Res Lett. https://doi.org/10.1029/2003gl019216

    Article  Google Scholar 

  78. Tegen I, Schepanski K, Heinold B (2013) Comparing two years of Saharan dust source activation obtained by regional modelling and satellite observations. Atmos Chem Phys 13:2381–2390. https://doi.org/10.5194/acp-13-2381-2013

    Article  Google Scholar 

  79. Tesfaye M, Tsidu GM, Botai J et al (2015) Mineral dust aerosol distributions, its direct and semi-direct effects over South Africa based on regional climate model simulation. J Arid Environ 114:22–40. https://doi.org/10.1016/j.jaridenv.2014.11.002

    Article  Google Scholar 

  80. Thomson AM, Calvin KV, Smith SJ et al (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Change 109:77–94. https://doi.org/10.1007/s10584-011-0151-4

    Article  Google Scholar 

  81. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800. https://doi.org/10.1175/1520-0493(1989)117%3c1779:ACMFSF%3e2.0.CO;2

    Article  Google Scholar 

  82. Tsikerdekis A, Zanis P, Steiner AL et al (2017) Impact of dust size parameterizations on aerosol burden and radiative forcing in RegCM4. Atmos Chem Phys 17:769–791. https://doi.org/10.5194/acp-17-769-2017

    Article  Google Scholar 

  83. Twomey S (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152. https://doi.org/10.1175/1520-0469(1977)034%3c1149:TIOPOT%3e2.0.CO;2

    Article  Google Scholar 

  84. Wang T, Li S, Shen Y et al (2010) Investigations on direct and indirect effect of nitrate on temperature and precipitation in China using a regional climate chemistry modeling system. J Geophys Res 115:D00K26. https://doi.org/10.1029/2009jd013264

    Article  Google Scholar 

  85. Whale TF (2018) Ice nucleation in mixed-phase clouds. In: Mixed-phase clouds. Elsevier, New York, pp 13–41. https://doi.org/10.1016/B978-0-12-810549-8.00002-7

  86. Winker DM, Vaughan MA, Omar A et al (2009) Overview of the CALIPSO mission and CALIOP data processing algorithms. J Atmos Ocean Technol 26:2310–2323. https://doi.org/10.1175/2009JTECHA1281.1

    Article  Google Scholar 

  87. Woodage MJ, Slingo A, Woodward S, Comer RE (2010) U.K. HiGEM: simulations of desert dust and biomass burning aerosols with a high-resolution atmospheric GCM. J Clim 23:1636–1659. https://doi.org/10.1175/2009JCLI2994.1

    Article  Google Scholar 

  88. Woodward S, Roberts DL, Betts RA (2005) A simulation of the effect of climate change-induced desertification on mineral dust aerosol. Geophys Res Lett. https://doi.org/10.1029/2005gl023482

    Article  Google Scholar 

  89. Yamashita K, Murakami M, Hashimoto A, Tajiri T (2011) CCN ability of asian mineral dust particles and their effects on cloud droplet formation. J Meteorol Soc Japan 89:581–587. https://doi.org/10.2151/jmsj.2011-512

    Article  Google Scholar 

  90. Yoshioka M, Mahowald NM, Conley AJ et al (2007) Impact of desert dust radiative forcing on sahel precipitation: relative importance of dust compared to sea surface temperature variations, vegetation changes, and greenhouse gas warming. J Clim 20:1445–1467. https://doi.org/10.1175/JCLI4056.1

    Article  Google Scholar 

  91. Zakey AS, Solmon F, Giorgi F (2006) Implementation and testing of a desert dust module in a regional climate model. Atmos Chem Phys 6:4687–4704. https://doi.org/10.5194/acp-6-4687-2006

    Article  Google Scholar 

  92. Zanis P, Katragkou E, Tegoulias I et al (2012a) Regional air quality simulations over europe in present and future climate: evaluation and climate change impacts on near surface ozone. COMECAP, Athens, pp 1–6

    Google Scholar 

  93. Zanis P, Ntogras C, Zakey A et al (2012b) Regional climate feedback of anthropogenic aerosols over Europe using RegCM3. Clim Res 52:267–278. https://doi.org/10.3354/cr01070

    Article  Google Scholar 

  94. Zhang DF, Zakey AS, Gao XJ et al (2009) Simulation of dust aerosol and its regional feedbacks over East Asia using a regional climate model. Atmos Chem Phys 9:1095–1110. https://doi.org/10.5194/acp-9-1095-2009

    Article  Google Scholar 

  95. Zhao C, Liu X, Leung LR, Hagos S (2011) Radiative impact of mineral dust on monsoon precipitation variability over West Africa. Atmos Chem Phys 11:1879–1893. https://doi.org/10.5194/acp-11-1879-2011

    Article  Google Scholar 

Download references

Acknowledgements

Results presented in this work have been produced using the AUTH Scientific Computing Centre Infrastructure and technical support. This work was also supported by computational time granted from the Greek Research & Technology Network (GRNET) in the National High Performance Computing facility ARIS under the projects “Direct Climate Feedback of Dust (DCFD)” and “Dataset for dUst effect on Climate, Health, Economy and Society Studies (DUCHESS)”. The authors would like also to acknowledge the use of data from the LIVAS (http://lidar.space.noa.gr:8080/livas), CM SAF (http://www.cmsaf.eu) and CRU (https://crudata.uea.ac.uk/cru/data/hrg) databases.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Athanasios Tsikerdekis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5080 kb)

Appendix

Appendix

Modified Normalized Mean Bias (MNMB): \(MNMB = \frac{2}{N}\mathop \sum \limits_{i}^{{}} \frac{{{\text{sim}}_{i} - obs_{i} }}{{{\text{sim}}_{i} + obs_{i} }}\)

Fractional Gross Error (FGE): \(FGE = \frac{2}{N}\mathop \sum \limits_{i}^{{}} \left| {\frac{{sim_{i} - obs_{i} }}{{sim_{i} + obs_{i} }}} \right|\)

Percent Bias (P.Bias): \(P.Bias = \frac{{100 \times \left[ {\sum \left( {{\text{sim}} - obs} \right)} \right]}}{{\sum \left( {obs} \right)}}\) where obs and sim is the observed and model quantities, respectively. N is the population.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsikerdekis, A., Zanis, P., Georgoulias, A.K. et al. Direct and semi-direct radiative effect of North African dust in present and future regional climate simulations. Clim Dyn 53, 4311–4336 (2019). https://doi.org/10.1007/s00382-019-04788-z

Download citation

Keywords

  • Dust radiative effect
  • Dust direct
  • Dust semi-direct
  • Climate change
  • Regional climate model
  • Saharan dust
  • Dust and climate future projection
  • RegCM4
  • LIVAS