Projected near-term changes in three types of heat waves over China under RCP4.5

Abstract

The changes in three aspects of frequency, intensity and duration of the compound, daytime and nighttime heat waves (HWs) over China during extended summer (May–September) in a future period of the mid-21st century (FP; 2045–2055) under RCP4.5 scenario relative to present day (PD; 1994–2011) are investigated by two models, MetUM-GOML1 and MetUM-GOML2, which comprise the atmospheric components of two state-of-the-art climate models coupled to a multi-level mixed-layer ocean model. The results show that in the mid-21st century all three types of HWs in China will occur more frequently with strengthened intensity and elongated duration relative to the PD. The compound HWs will change most dramatically, with the frequency in the FP being 4–5 times that in the PD, and the intensity and duration doubling those in the PD. The changes in daytime and nighttime HWs are also remarkable, with the changes of nighttime HWs larger than those of daytime HWs. The future changes of the three types of HWs in China in two models are similar in terms of spatial patterns and area-averaged quantities, indicating these projected changes of HWs over the China under RCP4.5 scenario are robust. Further analyses suggest that projected future changes in HWs over China are determined mainly by the increase in seasonal mean surface air temperatures with change in temperature variability playing a minor role. The seasonal mean temperature increase is due to the increase in surface downward longwave radiation and surface shortwave radiation. The increase in downward longwave radiation results from the enhanced greenhouse effect and increased water vapour in the atmosphere. The increase in surface shortwave radiation is the result of the decreased aerosol emissions, via direct aerosol–radiation interaction and indirect aerosol–cloud interaction over southeastern and northeastern China, and the reduced cloud cover related to a decrease in relative humidity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245(4923):1227–1230. https://doi.org/10.1126/science.245.4923.1227

    Article  Google Scholar 

  2. Argueso D, Di Luca A, Perkins-Kirkpatrick SE, Evans JP (2016) Seasonal mean temperature changes control future heat waves. Geophys Res Lett 43(14):7653–7660. https://doi.org/10.1002/2016GL069408

    Article  Google Scholar 

  3. Arribas A, Glover M, Maidens A, Peterson K, Gordon M, MacLachlan C, Graham R, Fereday D, Camp J, Scaife A (2011) The GloSea4 ensemble prediction system for seasonal forecasting. Mon Weather Rev 139(6):1891–1910. https://doi.org/10.1175/2010MWR3615.1

    Article  Google Scholar 

  4. Black E, Blackburn M, Harrison G, Hoskins B, Methven J (2004) Factors contributing to the summer 2003 European heatwave. Weather 59(8):217–223. https://doi.org/10.1256/wea.74.04

    Article  Google Scholar 

  5. Boé J, Terray L (2014) Land–sea contrast, soil–atmosphere and cloud–temperature interactions: interplays and roles in future summer European climate change. Clim Dyn 42(3–4):683–699. https://doi.org/10.1007/s00382-013-1868-8

    Article  Google Scholar 

  6. Chen W, Dong B (2018) Anthropogenic impacts on recent decadal change in temperature extremes over China: relative roles of greenhouse gases and anthropogenic aerosols. Clim Dyn 1:1. https://doi.org/10.1007/s00382-018-4342-9

    Article  Google Scholar 

  7. Chen Y, Li Y (2017) An inter-comparison of three heat wave types in China during 1961–2010: observed basic features and linear trends. Sci Rep 7:45619. https://doi.org/10.1038/srep45619

    Article  Google Scholar 

  8. Chen RD, Lu RY (2014) Large-scale circulation anomalies associated with ‘tropical night’ weather in Beijing, China. Int J Climatol 34(6):1980–1989. https://doi.org/10.1002/joc.3815

    Article  Google Scholar 

  9. Chen Y, Zhai P (2017) Revisiting summertime hot extremes in China during 1961–2015: overlooked compound extremes and significant changes. Geophys Res Lett. https://doi.org/10.1002/2016GL072281

    Article  Google Scholar 

  10. Chen Y, Chen W, Su Q, Luo F, Sparrow S, Tian F, Dong B, Tett SFB, Lott FC, Wallom D (2019) Anthropogenic warming has substantially increased the likelihood of July 2017-like heat waves over Central-Eastern China [in “Explaining Extremes of 2017 from a Climate Perspective”]. Bull Amer Meteor Soc 100(1):S91–S95. https://doi.org/10.1175/BAMS-D-18-0087.1

    Article  Google Scholar 

  11. Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Change 2(7):491–496. https://doi.org/10.1038/nclimate1452

    Article  Google Scholar 

  12. Della-Marta PM, Luterbacher J, von Weissenfluh H, Xoplaki E, Brunet M, Wanner H (2007) Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability. Clim Dyn 29(2):251–275. https://doi.org/10.1007/s00382-007-0233-1

    Article  Google Scholar 

  13. Dong B, Gregory JM, Sutton RT (2009) Understanding land–sea warming contrast in response to increasing greenhouse gases. Part I: Transient adjustment. J Clim 22(11):3079–3097. https://doi.org/10.1175/2009JCLI2652.1

    Article  Google Scholar 

  14. Dong B, Sutton RT, Shaffrey L, Klingaman NP (2017) Attribution of forced decadal climate change in coupled and uncoupled ocean–atmosphere model experiments. J Clim 30(16):6203–6223. https://doi.org/10.1175/jcli-d-16-0578.1

    Article  Google Scholar 

  15. Freychet N, Tett S, Wang J, Hegerl G (2017) Summer heat waves over Eastern China: dynamical processes and trend attribution. Environ Res Lett 12(2):024015. https://doi.org/10.1088/1748-9326/aa5ba3

    Article  Google Scholar 

  16. Freychet N, Sparrow S, Tett SFB, Mineter MJ, Hegerl GC, Wallom DCH (2018) Impacts of anthropogenic forcings and El Nino on Chinese extreme temperatures. Adv Atmos Sci 35(8):994–1002. https://doi.org/10.1007/s00376-018-7258-8

    Article  Google Scholar 

  17. Gershunov A, Cayan DR, Iacobellis SF (2009) The great 2006 heat wave over California and Nevada: signal of an increasing trend. J Clim 22(23):6181–6203. https://doi.org/10.1175/2009JCLI2465.1

    Article  Google Scholar 

  18. Gosling SN, Lowe JA, McGregor GR, Pelling M, Malamud BD (2009) Associations between elevated atmospheric temperature and human mortality: a critical review of the literature. Clim Change 92(3–4):299–341. https://doi.org/10.1007/s10584-008-9441-x

    Article  Google Scholar 

  19. Guirguis K, Gershunov A, Cayan DR, Pierce DW (2018) Heat wave probability in the changing climate of the Southwest US. Clim Dyn 50(9–10):3853–3864. https://doi.org/10.1007/s00382-017-3850-3

    Article  Google Scholar 

  20. Guo X, Huang J, Luo Y, Zhao Z, Xu Y (2017) Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models. Theor Appl Climatol 128(3–4):507–522. https://doi.org/10.1007/s00704-015-1718-1

    Article  Google Scholar 

  21. Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extremes 10:4–10. https://doi.org/10.1016/j.wace.2015.08.001

    Article  Google Scholar 

  22. Hirons L, Klingaman N, Woolnough S (2015) MetUM-GOML: a near-globally coupled atmosphere–ocean-mixed-layer model. Geosci Model Dev 8:363–379. https://doi.org/10.5194/gmd-8-363-2015

    Article  Google Scholar 

  23. Jones C et al (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4(3):543–570. https://doi.org/10.5194/gmd-4-543-2011

    Article  Google Scholar 

  24. Karl TR, Knight RW (1997) The 1995 Chicago heat wave: how likely is a recurrence? Bull Am Meteor Soc 78(6):1107–1120. https://doi.org/10.1175/1520-0477(1997)078%3c1107:tchwhl%3e2.0.co;2

    Article  Google Scholar 

  25. Lamarque J-F, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10(15):7017–7039. https://doi.org/10.5194/acp-10-7017-2010

    Article  Google Scholar 

  26. Lamarque J-F, Kyle GP, Meinshausen M, Riahi K, Smith SJ, van Vuuren DP, Conley AJ, Vitt F (2011) Global and regional evolution of short-lived radiatively-active gases and aerosols in the representative concentration pathways. Clim Change 109:191. https://doi.org/10.1007/s10584-011-0155-0

    Article  Google Scholar 

  27. Lau WKM, Kim KM (2017) Competing influences of greenhouse warming and aerosols on Asian summer monsoon circulation and rainfall. Asia-Pac J Atmos Sci 53(2):181–194. https://doi.org/10.1007/s13143-017-0033-4

    Article  Google Scholar 

  28. Lau N-C, Nath MJ (2014) Model simulation and projection of European heat waves in present-day and future climates. J Clim 27(10):3713–3730. https://doi.org/10.1175/jcli-d-13-00284.1

    Article  Google Scholar 

  29. Lau WKM, Kim KM, Leung LR (2017) Changing circulation structure and precipitation characteristics in Asian monsoon regions: greenhouse warming vs. aerosol effects. Geosci Lett 4(1):28. https://doi.org/10.1186/s40562-017-0094-3

    Article  Google Scholar 

  30. Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529(7584):84. https://doi.org/10.1038/nature16467

    Article  Google Scholar 

  31. Li Z, Cao LJ, Zhu YN, Yan ZW (2016) Comparison of two homogenized datasets of daily maximum/mean/minimum temperature in China during 1960–2013. J Meteor Res 30(1):53–66. https://doi.org/10.1007/s13351-016-5054-x

    Article  Google Scholar 

  32. Li Y, Ding Y, Li W (2017) Observed trends in various aspects of compound heat waves across China from 1961 to 2015. J Meteor Res 31(3):455–467. https://doi.org/10.1007/s13351-017-6150-2

    Article  Google Scholar 

  33. Luo M, Lau N-C (2017) Heat waves in southern China: synoptic behavior, long-term change, and urbanization effects. J Clim 30(2):703–720. https://doi.org/10.1175/jcli-d-16-0269.1

    Article  Google Scholar 

  34. Luo M, Lau N-C (2018) Synoptic characteristics, atmospheric controls, and long-term changes of heat waves over the Indochina Peninsula. Clim Dyn 51(7–8):2707–2723. https://doi.org/10.1007/s00382-017-4038-6

    Article  Google Scholar 

  35. Luo F, Dong B, Tian F, Li S (2018) Anthropogenically forced decadal change of South Asian summer monsoon across the mid-1990s. J Geophys Res Atmos 124(2):806–824. https://doi.org/10.1029/2018jd029195

    Article  Google Scholar 

  36. Ma SM, Zhou TJ, Stone DA, Angelil O, Shiogama H (2017) Attribution of the July–August 2013 heat event in Central and Eastern China to anthropogenic greenhouse gas emissions. Environ Res Lett. https://doi.org/10.1088/1748-9326/aa69d2

    Article  Google Scholar 

  37. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st Century. Science 305(5686):994–997. https://doi.org/10.1126/science.1098704

    Article  Google Scholar 

  38. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Vuuren DP, Van TR, Carter E, Seita K Mikiko, Tom K (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756. https://doi.org/10.1038/nature08823

    Article  Google Scholar 

  39. Perkins SE (2015) A review on the scientific understanding of heatwaves—their measurement, driving mechanisms, and changes at the global scale. Atmos Res 164–165:242–267. https://doi.org/10.1016/j.atmosres.2015.05.014

    Article  Google Scholar 

  40. Perkins SE, Alexander LV (2013) On the measurement of heat waves. J Clim 26(13):4500–4517. https://doi.org/10.1175/jcli-d-12-00383.1

    Article  Google Scholar 

  41. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of SST, sea ice and night marine air temperature since the late nineteenth century. J Geophys Res. https://doi.org/10.1029/2002JD002670

    Article  Google Scholar 

  42. Robine JM, Cheung SLK, Le Roy S, Van Oyen H, Griffiths C, Michel JP, Herrmann FR (2008) Death toll exceeded 70,000 in Europe during the summer of 2003. C R Biol 331(2):171–178. https://doi.org/10.1016/j.crvi.2007.12.001

    Article  Google Scholar 

  43. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427(6972):332–336. https://doi.org/10.1038/nature02300

    Article  Google Scholar 

  44. Schoetter R, Cattiaux J, Douville H (2015) Changes of western European heat wave characteristics projected by the CMIP5 ensemble. Clim Dyn 45(5–6):1601–1616. https://doi.org/10.1007/s00382-014-2434-8

    Article  Google Scholar 

  45. Seneviratne SI, Donat MG, Mueller B, Alexander LV (2014) No pause in the increase of hot temperature extremes. Nat Clim Change 4(3):161. https://doi.org/10.1038/nclimate2145

    Article  Google Scholar 

  46. Smith DM, Murphy JM (2007) An objective ocean temperature and salinity analysis using covariances from a global climate model. J Geophys Res Oceans. https://doi.org/10.1029/2005JC003172

    Article  Google Scholar 

  47. Sparrow S, Su Q, Tian FX, Li SH, Chen Y, Chen W, Luo FF, Freychet N, Lott FC, Dong BW, Tett SFB, Wallom D (2018) Attributing human influence on the July 2017 Chinese heatwave: the influence of sea-surface temperatures. Environ Res Lett. https://doi.org/10.1088/1748-9326/ade356

    Article  Google Scholar 

  48. Stefanon M, Fabio DA, Philippe D (2012) Heatwave classification over Europe and the Mediterranean region. Environ Res Lett 7(1):014023. https://doi.org/10.1088/1748-9326/7/1/014023

    Article  Google Scholar 

  49. Su Q, Dong B (2019) Recent decadal changes in heat waves over China: drivers and mechanisms. J Clim

  50. Sun Y, Zhang XB, Zwiers FW, Song LC, Wan H, Hu T, Yin H, Ren GY (2014) Rapid increase in the risk to extreme summer heat in Eastern China. Nat Clim Change 4(12):1082–1085. https://doi.org/10.1038/nclimate2410

    Article  Google Scholar 

  51. Sun Y, Song L, Yin H, Zhou B, Hu T, Zhang X, Stott P (2016) Human influence on the 2015 extreme high temperature events in Western China [in “Explaining Extremes of 2015 from a Climate Perspective”]. Bull Am Meteor Soc 97(12):S102–S106. https://doi.org/10.1175/bams-d-16-0158.1

    Article  Google Scholar 

  52. Tan J, Zheng Y, Song G, Kalkstein LS, Kalkstein AJ, Tang X (2007) Heat wave impacts on mortality in Shanghai, 1998 and 2003. Int J Biometeorol 51(3):193–200. https://doi.org/10.1007/s00484-006-0058-3

    Article  Google Scholar 

  53. Tian F, Dong B, Robson J, Sutton R (2018) Forced decadal changes in the East Asian summer monsoon: the roles of greenhouse gases and anthropogenic aerosols. Clim Dyn 1:1–17. https://doi.org/10.1007/s00382-018-4105-7

    Article  Google Scholar 

  54. Twomey S (1977) Influence of pollution on shortwave albedo of clouds. J Atmos Sci 34(7):1149–1152. https://doi.org/10.1175/1520-0469(1977)034%3c1149:tiopot%3e2.0.co;2

    Article  Google Scholar 

  55. Walters D, Best M, Best M, Bushell A, Copsey D, Copsey D, Edwards J, Falloon P, Harris C, Lock A, Manners J, Morcrette C (2011) The Met Office Unified Model global atmosphere 3.0/3.1 and JULES global land 3.0/3.1 configurations. Geosci Model Dev 4(4):919. https://doi.org/10.5194/gmd-4-919-2011

    Article  Google Scholar 

  56. Walters D, Wood N, Vosper S, Milton S (2014) ENDGame: a new dynamical core for seamless atmospheric prediction. Met Office documentation. http://www.metoffice.gov.uk/media/pdf/s/h/ENDGameGOVSciv2.0.pdf

  57. Walters D, Brooks M, Boutle I, Melvin T, Stratton R, Vosper S, Wells H, Williams K, Wood N, Allen T (2017) The Met Office unified model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations. Geosci Model Dev 10(4):1487–1520. https://doi.org/10.5194/gmd-10-1487-2017

    Article  Google Scholar 

  58. Wang W, Zhou W, Wang X, Fong SK, Leong KC (2013) Summer high temperature extremes in Southeast China associated with the East Asian jet stream and circumglobal teleconnection. J Geophys Res Atmos 118(15):8306–8319. https://doi.org/10.1002/jgrd.50633

    Article  Google Scholar 

  59. Wang C, Zhang L, Lee S-K, Wu L, Mechoso CR (2014) A global perspective on CMIP5 climate model biases. Nat Clim Change 4:201–205. https://doi.org/10.1038/nclimate2118

    Article  Google Scholar 

  60. Wang W, Zhou W, Li X, Wang X, Wang D (2016) Synoptic-scale characteristics and atmospheric controls of summer heat waves in China. Clim Dyn 46(9):2923–2941. https://doi.org/10.1007/s00382-015-2741-8

    Article  Google Scholar 

  61. Wang P, Tang J, Sun X, Wang S, Wu J, Dong X, Fang J (2017) Heatwaves in China: definitions, leading patterns and connections to large-scale atmospheric circulation and SSTs. J Geophys Res Atmos. https://doi.org/10.1002/2017JD027180

    Article  Google Scholar 

  62. Wilbanks TJ, Fernandez S (2014) Climate change and infrastructure, urban systems, and vulnerabilities: technical report for the US department of energy in support of the national climate assessment. Island Press, Washington

    Google Scholar 

  63. Wilcox LJ, Dong B, Sutton RT, Highwood EJ (2015) The 2014 hot, dry summer in Northeast Asia [in “Explaining Extremes of 2014 from a Climate Perspective”]. Bull Am Meteor Soc 96(12):S105–S110. https://doi.org/10.1175/bams-d-15-00123.1

    Article  Google Scholar 

  64. Xu Y, Ramanathan V, Victor DG (2018) Global warming will happen faster than we think. Nature 564:30–32. https://doi.org/10.1038/d41586-018-07586-5

    Article  Google Scholar 

  65. You QL, Jiang ZH, Kong L, Wu ZW, Bao YT, Kang SC, Pepin N (2017) A comparison of heat wave climatologies and trends in China based on multiple definitions. Clim Dyn 48(11):3975–3989. https://doi.org/10.1007/s00382-016-3315-0

    Article  Google Scholar 

  66. Yu R, Zhai PM, Lu YY (2018) Implications of differential effects between 1.5 and 2 °C global warming on temperature and precipitation extremes in China’s urban agglomerations. Int J Climatol 38(5):2374–2385. https://doi.org/10.1002/joc.5340

    Article  Google Scholar 

  67. Zhou B, Wen QH, Xu Y, Song L, Zhang X (2014a) Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J Clim 27(17):6591–6611. https://doi.org/10.1175/jcli-d-13-00761.1

    Article  Google Scholar 

  68. Zhou TJ, Ma SM, Zou LW (2014b) Understanding a hot summer in Central Eastern China: summer 2013 in context of multimodel trend analysis [in “Explaining Extremes of 2013 from a Climate Perspective”]. Bull Am Meteor Soc 95(9):S54–S57

    Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China under Grants 41505037 and 41875103, by the Applied Basic Research Foundation of Yunnan Province (2016FB078), and by the UK-China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund. QS is supported by the China Scholarship Council. BD is supported by the U.K. National Centre for Atmospheric Science-Climate (NCAS-Climate) at the University of Reading. The authors like to thank three anonymous reviewers for their constructive comments on the earlier version of the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qin Su.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1505 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Su, Q., Dong, B. Projected near-term changes in three types of heat waves over China under RCP4.5. Clim Dyn 53, 3751–3769 (2019). https://doi.org/10.1007/s00382-019-04743-y

Download citation

Keywords

  • Heat wave
  • Heat wave type
  • Future change
  • China
  • Coupled models