Orbital and millennial northern mid-latitude westerlies over the last glacial period

  • Yun LiEmail author
  • Yougui SongEmail author
  • Qiuzhen YinEmail author
  • Li Han
  • Yixuan Wang


The northern mid-latitude westerlies play an important role in the climate interactions between the low and high latitudes. Our understanding of the factors that control the latitudinal displacement of the westerlies remains incomplete due to insufficient climatic proxy. Here we present a latitudinal-shift record of the westerlies in the eastern Central Asia over the past 70,000 years, on the basis of the grain size of the loess sequence from the Tacheng basin. On millennial timescale, the variation of the reconstructed westerlies resembles that of the Greenland temperature and the Atlantic meridional overturning circulation (AMOC), indicating the role of the AMOC on the westerlies. On orbital time scale, their variation is controlled by precession and insolation. Our analyses of the LOVECLIM and CCSM3 models’ results show that the impact of insolation and AMOC on the latitudinal shift of the westerlies is through changing the latitudinal temperature and pressure gradients.


Orbital Millennial Northern westerlies AMOC Precession 



This work was supported by funds from the National Natural Science Foundation of China (NSFC Grant no. 41702189, 41572162), and the Fonds de la Recherche Scientifique-FNRS under Grant MIS F.4529.18. Q. Z. Yin is Research Associate of the Fonds de la Recherche Scientifique-FNRS.


  1. Aizen VB, Aizen EM, Melack JM (1996) Precipitation, melt and runoff in the northern Tien Shan. J Hydrol 186:229–251. CrossRefGoogle Scholar
  2. An Z, Kukla G, Porter SC, Xiao J (1991) Late quaternary dust flow on the Chinese loess plateau. Catena 18:125–132. CrossRefGoogle Scholar
  3. Bar-Matthews M, Ayalon A, Gilmour M, Matthews A, Hawkesworth CJ (2003) Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim Cosmochim Acta 67:3181–3199. CrossRefGoogle Scholar
  4. Berger A (1978) Long-term variations of daily insolation and quaternary climatic changes. J Atmos Sci 35:2362–2367.;2 CrossRefGoogle Scholar
  5. Brauer A, Haug GH, Dulski P, Sigman DM, Negendank JFW (2008) An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period. Nat Geosci 1:520–523. CrossRefGoogle Scholar
  6. Clement AC, Peterson LC (2008) Mechanisms of abrupt climate change of the last glacial period. Rev Geophys 46:RG4002. CrossRefGoogle Scholar
  7. Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjornsottir AE, Jouzel J, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218–220. CrossRefGoogle Scholar
  8. Ding Z, Ranov V, Yang S, Finaev A, Han J, Wang G (2002) The loess record in southern Tajikistan and correlation with Chinese loess. Earth Planet Sci Lett 200:387–400. CrossRefGoogle Scholar
  9. Ding Z, Derbyshire E, Yang S, Sun J, Liu T (2005) Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution. Earth Planet Sci Lett 237:45–55. CrossRefGoogle Scholar
  10. Fischer M, Domeisen DIV, Müller WA, Baehr J (2017) Changes in the seasonal cycle of the Atlantic meridional heat transport in a RCP 8.5 climate projection in MPI-ESM. Earth Syst Dyn 8:129–146.
  11. Fleitmann D, Cheng H, Badertscher S, Edwards R, Mudelsee M, Göktürk O, Fankhauser A, Pickering R, Raible CC, Matter A, Kramers J, Tüysüz O (2009) Timing and climatic impact of greenland interstadials recorded in stalagmites from northern turkey. Geophys Res Lett 36:L19707. CrossRefGoogle Scholar
  12. Goosse H, Brovkin V, Fichefet T, Haarsma R, Huybrechts P, Jongma J, Mochet A, Selten F, Barriat PY, Campin JM, Deleersnijder E, Driesschaert E, Goelzer H, Janssens I, Loutre MF, Morales Maqueda MA, Opsteegh T, Mathieu PP, Munhoven G, Petterson EJ, Renssen H, Roche DM, Schaeffer M, Tartinville B, Timmerman A, Weber SL (2010) Description of the Earth system model of intermediate complexity LOVECLIM version 1.2. Geosci Model Dev 3:603–633. CrossRefGoogle Scholar
  13. He F (2010) Simulating transient climate evolution of the last deglaciation with CCSM3. Ph. D thesis, Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, p 161Google Scholar
  14. Henry LG, McManus JF, Curry WB, Roberts NL, Piotrowski AM, Keigwin LD (2016) North Atlantic Ocean circulation and abrupt climate change during the last glaciation. Science. Google Scholar
  15. Hoff U, Rasmussen TL, Stein R, Ezat MM, Fahl K (2016) Sea ice and millennial-scale climate variability in the Nordic seas 90 kyr ago to present. Nat Commun 7:12247. CrossRefGoogle Scholar
  16. Hurrell JW, Van Loon H (1997) Decadal variations in climate associated with the north Atlantic oscillation. In: Diaz HF, Beniston M, Bradley RS (eds) Climatic change at high elevation sites. Springer, Dordrecht, pp 69–94. CrossRefGoogle Scholar
  17. Kwiecien O, Arz HW, Lamy F, Plessen B, Bahr A, Haug GH (2009) North Atlantic control on precipitation pattern in the Eastern Mediterranean/Black Sea region during the last glacial. Quat Res 71:375–384. CrossRefGoogle Scholar
  18. Lai Z (2006) Testing the use of an OSL standardised growth curve (SGC) for determination on quartz from the Chinese loess plateau. Radiat Meas 41:9–16. CrossRefGoogle Scholar
  19. Lai Z, Zöller L, Fuchs M, Brückner H (2008) Alpha efficiency determination for OSL of quartz extracted from Chinese loess. Radiat Meas 43:767–770. CrossRefGoogle Scholar
  20. Lai Z, Sun Y, Hou G, Yu L, Wu C (2012) A luminescence dating study of loess deposits from the Yili River basin in western China. Quat Geochronol 10:50–55. CrossRefGoogle Scholar
  21. Li G, Rao Z, Duan Y, Xia D, Wang L, Madsen DB, Jia J, Wei H, Qiang M, Chen J, Chen F (2016a) Paleoenvironmental changes recorded in a luminescence dated loess/paleosol sequence from the Tianshan Mountains, arid Central Asia, since the penultimate glaciation. Earth Planet Sci Lett 448:1–12. CrossRefGoogle Scholar
  22. Li Y, Song Y, Lai Z, Han L, An Z (2016b) Rapid and cyclic dust accumulation during MIS 2 in Central Asia inferred from loess OSL dating and grain-size analysis. Sci Rep 6:32365. CrossRefGoogle Scholar
  23. Liu Z, Otto-Bliesner BL, He F, Brady EC, Tomas R, Clark PU, Carlson AE, Lynch-Stieglitz J, Curry W, Brook E, Erickson D, Jacob R, Kutzbach J, Cheng J (2009) Transient simulation of last deglaciation with a new mechanism for Bølling–Allerød warming. Science 325:310–314. CrossRefGoogle Scholar
  24. Liu Z, Carlson AE, He F, Brady EC, Otto-Bliesner BL, Briegleb BP, Wehrenberg M, Clark PU, Wu S, Cheng J, Zhang J, Noone D, Zhu J (2012) Younger Dryas cooling and the Greenland climate response to CO2. Proc Natl Acad Sci 109:11101–11104. CrossRefGoogle Scholar
  25. Liu Z, Lu Z, Wen X, Otto-Bliesner BL, Timmermann A, Cobb KM (2014) Evolution and forcing mechanisms of El Niño over the past 21,000 years. Nature 515:550. CrossRefGoogle Scholar
  26. Lo L, Belt ST, Lattaud J, Friedrich T, Zeeden C, Schouten S, Smik L, Timmermann A, Cabedo-Sanz P, Huang J-J, Zhou L, Ou T-H, Chang Y-P, Wang L-C, Chou Y-M, Shen C-C, Chen M-T, Wei K-Y, Song S-R, Fang T-H, Gorbarenko SA, Wang W-L, Lee T-Q, Elderfield H, Hodell DA (2018) Precession and atmospheric CO2 modulated variability of sea ice in the central Okhotsk Sea since 130,000 years ago. Earth Planet Sci Lett 488:36–45. CrossRefGoogle Scholar
  27. Murray AS, Wintle AG (2000) Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat Meas 32:57–73. CrossRefGoogle Scholar
  28. Nagashima K, Tada R, Tani A, Sun Y, Isozaki Y, Toyoda S, Hasegawa H (2011) Millennial-scale oscillations of the westerly jet path during the last glacial period. J Asian Earth Sci 40:1214–1220. CrossRefGoogle Scholar
  29. North Greenland Ice Core Project Members (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431:147. CrossRefGoogle Scholar
  30. Overland JE, Dethloff K, Francis JA, Hall RJ, Hanna E, Kim S-J, Screen JA, Shepherd TG, Vihma T (2016) Nonlinear response of mid-latitude weather to the changing Arctic. Nat Clim Change 6:992. CrossRefGoogle Scholar
  31. Prescott JR, Hutton JT (1994) Cosmic ray contributions to dose rates for luminescence and esr dating: Large depths and long-term time variations. Radiat Meas 23:497–500. CrossRefGoogle Scholar
  32. Son S-W, Lee S (2005) The response of westerly jets to thermal driving in a primitive equation model. J Atmos Sci 62:3741–3757. CrossRefGoogle Scholar
  33. Sun Y, Clemens S, Morrill C, Lin X, Wang X, An Z (2012) Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nat Geosci 5:46–49. CrossRefGoogle Scholar
  34. Voskresenskaya EN, Maslova VN (2011) Winter–spring cyclonic variability in the Mediterranean-Black Sea region associated with global processes in the ocean-atmosphere system. Adv Sci Res 6:237–243. CrossRefGoogle Scholar
  35. Wen X, Liu Z, Wang S, Cheng J, Zhu J (2016) Correlation and anti-correlation of the East Asian summer and winter monsoons during the last 21,000 years. Nat Commun 7:11999. CrossRefGoogle Scholar
  36. Wu L, Li C, Yang C, Xie S-P (2008) Global teleconnections in response to a shutdown of the Atlantic meridional overturning circulation. J Clim 21:3002–3019. CrossRefGoogle Scholar
  37. Yin J (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett. Google Scholar
  38. Yin Q (2013) Insolation-induced mid-Brunhes transition in Southern Ocean ventilation and deep-ocean temperature. Nature 494:222–225. CrossRefGoogle Scholar
  39. Yin Q, Berger A (2012) Individual contribution of insolation and CO2 to the interglacial climates of the past 800,000 years. Clim Dyn 38:709–724. CrossRefGoogle Scholar
  40. Zhang R, Delworth TL (2005) Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J Clim 18:1853–1860. CrossRefGoogle Scholar
  41. Zhang J, Peng G, Huang M, Zhang S (2006) Are dust storm activities in North China related to Arctic ice–snow cover? Glob Planet Change 52:225–230. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake ResourcesQinghai Institute of Salt Lakes, Chinese Academy of SciencesXiningChina
  2. 2.Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lake, Qinghai Institute of Salt LakesChinese Academy of SciencesXiningChina
  3. 3.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth EnvironmentChinese Academy of SciencesXi’anChina
  4. 4.Georges Lemaître Centre for Earth and Climate Research, Earth and Life InstituteUniversité Catholique de LouvainLouvain-La-NeuveBelgium

Personalised recommendations