An empirical adjusted ENSO ocean energetics framework based on observational wind power in the tropical Pacific

Abstract

According to El Niño–Southern Oscillation (ENSO) energetics theory, the work done by the wind on the ocean, known as wind power, has a strong forcing relationship with ENSO sea surface temperature (SST) changes, wherein negative (positive) tropical Pacific wind power anomalies contribute to warm (cold) ENSO events. The ENSO energetics framework assumes a mean state characterized by easterly winds, westward currents and a thermocline shoaling from west to east such that positive zonal wind power anomalies will induce a La Niña state and negative anomalies will induce an El Niño state. In this study, tropical Pacific wind power is computed using satellite data and its correlations with Niño 3.4 SST anomalies evaluated and compared to the conventional dynamical predictors, namely warm water volume and wind stress. Analysis of the spatial and temporal structure of climatological wind power and its variability during individual ENSO events reveals sign inconsistencies in which certain wind power anomalies (e.g. those associated with westerly wind events in the far west) are positive despite forcing the system towards an El Niño state. These results show that the conventional ENSO energetics framework makes assumptions about the climatological state that are not always consistent with observations. We apply sign adjustments to the computation of a tropical Pacific wind power index that include the directional aspect of the wind power perturbations and find that these adjustments greatly enhance the lead correlations between wind power and Niño3.4 SST anomalies, which are now comparable to conventional dynamical predictors.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Battisti DS, Hirst AC (1989) Interannual variability in a tropical atmosphere–ocean model: influence of the basic state, ocean geometry and nonlinearity. J Atmos Sci 46:1687–1712

    Article  Google Scholar 

  2. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172

    Article  Google Scholar 

  3. Brown JN, Fedorov AV (2008) Mean energy balance in the tropical Pacific ocean. J Mar Res 66:1–23

    Article  Google Scholar 

  4. Brown JN, Fedorov AV (2010) How much energy is transferred from the winds to the thermocline on ENSO time scales? J Clim 23:1563–1580. https://doi.org/10.1175/2009JCLI2914.1

    Article  Google Scholar 

  5. Brown JN, Fedorov AV, Guilyardi E (2010) How well do coupled models replicate ocean energetics relevant to ENSO? Clim Dyn 36:2147–2158. https://doi.org/10.1007/s00382-010-0926-8

    Article  Google Scholar 

  6. Burls NJ, Fedorov AV (2014) What controls the mean east–west sea surface temperature gradient in the equatorial Pacific: the role of Cloud Albedo. J Clim 27:2757–2778. https://doi.org/10.1175/JCLI-D-13-00255.1

    Article  Google Scholar 

  7. Burls NJ, Reason CJC, Penven P, Philander SG (2011) Similarities between the tropical Atlantic seasonal cycle and ENSO: an energetics perspective. J Geophys Res 116:1025–1050. https://doi.org/10.1029/2011JC007164

    Article  Google Scholar 

  8. Burls NJ, Muir L, Vincent EM, Fedorov AV (2016) Extra-tropical origin of equatorial Pacific cold bias in climate models with links to cloud albedo. Clim Dyn 49:2093–2113. https://doi.org/10.1007/s00382-016-3435-6

    Article  Google Scholar 

  9. Cane MA, Zebiak SE (1985) A Theory for El Niño and the Southern Oscillation. Science 228(4703):1085–1087

    Article  Google Scholar 

  10. Chiodi AM, Harrison DE (2015) Equatorial Pacific easterly wind surges and the onset of La Niña events. J Clim 28:776–792. https://doi.org/10.1175/JCLI-D-14-00227.1

    Article  Google Scholar 

  11. Dijkstra HA, Neelin JD (1995) Ocean–atmosphere interaction and the tropical climatology. Part II: why the Pacific cold tongue is in the east. J Clim 8:1343–1359

    Article  Google Scholar 

  12. DiNezio PN, Deser C, Okumura Y, Karspeck A (2017) Predictability of 2-year La Niña events in a coupled general circulation model. Clim Dyn 49:4237–4261. https://doi.org/10.1007/s00382-017-3575-3

    Article  Google Scholar 

  13. Dong D, Li J, Huyan L, Xue J (2017) Atmospheric energetics over the tropical Pacific during the ENSO Cycle. J Clim 30:3635–3654. https://doi.org/10.1175/JCLI-D-16-0480.1

    Article  Google Scholar 

  14. Fedorov AV (2002) The response of the coupled tropical ocean–atmosphere to westerly wind bursts. Q J R Meteorol Soc 128:1–23

    Article  Google Scholar 

  15. Fedorov AV (2007) Net energy dissipation rates in the tropical ocean and ENSO dynamics. J Clim 20:1108–1117. https://doi.org/10.1175/JCLI4024.1

    Article  Google Scholar 

  16. Fedorov AV, Harper SL, Philander SG et al (2003) How predictable is El Niño? Bull Am Meteorol Soc 84:911–919. https://doi.org/10.1175/BAMS-84-7-911

    Article  Google Scholar 

  17. Fedorov AV, Hu S, Lengaigne M, Guilyardi E (2014) The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Clim Dyn 44:1381–1401. https://doi.org/10.1007/s00382-014-2126-4

    Article  Google Scholar 

  18. Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang Z, Zhang M (2011) The community climate system model version 4. J Clim 24:4973–4991. https://doi.org/10.1175/2011JCLI4083.1

    Article  Google Scholar 

  19. Goddard L, Philander SG (2000) The energetics of El Niño and La Niña. J Clim 13:1496–1516

    Article  Google Scholar 

  20. Guilyardi E, Braconnot P, Jin F-F, Kim ST, Kolasinski M, Li T, Musat I (2009) Atmosphere feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. J Clim 22:5698–5718. https://doi.org/10.1175/2009JCLI2815.1

    Article  Google Scholar 

  21. Holliday D, McIntyre ME (1981) On potential energy density in an incompressible stratified fluid. J Fluid Mech 107:221–225

    Article  Google Scholar 

  22. Hu S, Fedorov AV (2016) Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc Natl Acad Sci USA 113:2005–2010. https://doi.org/10.1073/pnas.1514182113

    Article  Google Scholar 

  23. Hu S, Fedorov AV (2017) The extreme El Niño of 2015–2016: the role of westerly and easterly wind bursts, and preconditioning by the failed 2014 event. Clim Dyn 0:0–0. https://doi.org/10.1007/s00382-017-3531-2

    Article  Google Scholar 

  24. Hu S, Fedorov AV, Lengaigne M, Guilyardi E (2014) The impact of westerly wind bursts on the diversity and predictability of El Niño events: an ocean energetics perspective. Geophys Res Lett 41:4654–4663. https://doi.org/10.1002/(ISSN)1944-8007

    Article  Google Scholar 

  25. Huang RX (1998) Mixing and available potential energy in a Boussinesq ocean. J Phys Ocn 28:669–678

    Article  Google Scholar 

  26. Jin F-F (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  27. Kay JE, Deser C, Phillips A et al (2015) The community earth system model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Meteorol Soc 96:1333–1349. https://doi.org/10.1175/BAMS-D-13-00255.1

    Article  Google Scholar 

  28. Kessler WS (2002) Is ENSO a cycle or a series of events? Geophys Res Lett 29:40-1-40–40-1-44. https://doi.org/10.1029/2002GL015924

    Article  Google Scholar 

  29. Lagerloef GSE, Mitchum GT, Lukas RB, Niiler PP (1999) Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data. J Geophys Res 104:23313–23326

    Article  Google Scholar 

  30. Lengaigne M, Boulanger J-P, Menkes C, Masson S, Madec G, Delecluse P (2002) Ocean response to the March 1997 westerly wind event. J Geophys Res 107:SRF16. https://doi.org/10.1029/2001JC000841

    Article  Google Scholar 

  31. Lengaigne M, Boulanger J-P, Menkes C, Madec G, Delecluse P, Guilyardi E, Slingo J (2003) The March 1997 westerly wind event and the onset of the 1997/98 El Nino: understanding the role of the atmospheric response. J Clim 16:3330–3343

    Article  Google Scholar 

  32. Lengaigne M, Boulanger J-P, Menkes C, Delecluse P, Slingo J (2004) Westerly wind events in the tropical pacific and their influence on the coupled ocean–atmosphere system: a review. In: Wang C, Xie S-P, Carton JA (eds) Earth’s climate. American Geophysical Union, Washington, DC, pp 49–69

    Google Scholar 

  33. Levine AFZ, McPhaden MJ (2016) How the July 2014 easterly wind burst gave the 2015–2016 El Niño a head start. Geophys Res Lett 43:6503–6510. https://doi.org/10.1002/(ISSN)1944-8007

    Article  Google Scholar 

  34. Levine AFZ, Jin F-F, Stuecker MF (2017) A simple approach to quantifying the noise–ENSO interaction. Part II: the role of coupling between the warm pool and equatorial zonal wind anomalies. Clim Dyn 48:19–37. https://doi.org/10.1007/s00382-016-3268-3

    Article  Google Scholar 

  35. Lorenz EN (1955) Available potential energy and maintenance of the general circulation. Tellus 7:157–167

    Article  Google Scholar 

  36. McGregor S, Timmermann A, Jin F-F, Kessler WS (2015) Charging El Niño with off-equatorial westerly wind events. Clim Dyn 47:1111–1125. https://doi.org/10.1007/s00382-015-2891-8

    Article  Google Scholar 

  37. McPhaden MJ (1999) Genesis and evolution of the 1997–98 El Nino. Science 283:950–954. https://doi.org/10.1126/science.283.5404.950

    Article  Google Scholar 

  38. McPhaden MJ (2015) Playing hide and seek with El Niño. Nat Clim Change 5:791–795. https://doi.org/10.1038/nclimate2775

    Article  Google Scholar 

  39. Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J Clim 13:3551–3559

    Article  Google Scholar 

  40. Min Q, Su J, Zhang R, Rong X (2015) What hindered the El Niño pattern in 2014? Geophys Res Lett 42:6762–6770. https://doi.org/10.1002/(ISSN)1944-8007

    Article  Google Scholar 

  41. Neelin JD, Dijkstra HA (1995) Ocean–atmosphere interaction and the tropical climatology. Part I: the dangers of flux correction. J Clim 8:1325–1342

    Article  Google Scholar 

  42. Neelin JD, Battisti DS, Hirst AC, Jin F-F, Wakata Y, Yamagata T, Zebiak SE (1998) ENSO theory. J Geophys Res 103:14261–14290

    Article  Google Scholar 

  43. Neske S, McGregor S (2018) Understanding the warm water volume precursor of ENSO events and its interdecadal variation. Geophys Res Lett 45:1577–1585. https://doi.org/10.1002/2017GL076439

    Article  Google Scholar 

  44. Oort AH, Ascher SC, Levitus S, Peixoto JP (1989) New estimates of the available potential energy in the world ocean. J Geophys Res 94:3187–3200

    Article  Google Scholar 

  45. Philander SG (1990) El Niño, La Niña, and the Southern Oscillation. Academic Press Inc, San Diego

    Google Scholar 

  46. Philander SG, Fedorov AV (2003) Is El Niño sporadic or cyclic? Annu Rev Earth Planet Sci 31:579–594. https://doi.org/10.1146/annurev.earth.31.100901.141255

    Article  Google Scholar 

  47. Planton Y, Vialard J, Guilyardi E, Lengaigne M, Izumo T (2018) Western Pacific oceanic heat content: a better predictor of La Niña than El Niño. Geophys Res Lett 45:9824–9833. https://doi.org/10.1029/2018GL079341

    Article  Google Scholar 

  48. Praveen Kumar B, Vialard J, Lengaigne M, Murty VSM, McPhaden MJ, Cronin MF, Pinsard F, Gopala Reddy K (2012) TropFlux wind stresses over the tropical oceans: evaluation and comparison with other products. Clim Dyn 40:2049–2071. https://doi.org/10.1007/s00382-012-1455-4

    Article  Google Scholar 

  49. Puy M (2016) Modulation of equatorial Pacific sea surface temperature response to westerly wind events by the oceanic background state. Clim Dyn. https://doi.org/10.1007/s00382-016-3480-1

    Article  Google Scholar 

  50. Puy M, Vialard J, Lengaigne M, Guilyardi E, DiNezio PN, Voldoire A, Balmaseda M, Madec G, Menkes C, McPhaden MJ (2017) Influence of westerly wind events stochasticity on El Niño amplitude: the case of 2014 vs. 2015. Clim Dyn. https://doi.org/10.1007/s00382-017-3938-9

    Article  Google Scholar 

  51. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Roswell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:14–37. https://doi.org/10.1029/2002JD002670

    Article  Google Scholar 

  52. Saha S, Nadiga S, Thiaw C et al (2006) The NCEP climate forecast system. J Clim 19:3483–3517

    Article  Google Scholar 

  53. Schopf PS, Suarez MJ (1988) Vacillations in a coupled ocean–atmosphere model. J Atmos Sci 45:549–566

    Article  Google Scholar 

  54. Seiki A, Takayabu YN (2007a) Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: statistics. Mon Weather Rev 135:3325–3345. https://doi.org/10.1175/MWR3477.1

    Article  Google Scholar 

  55. Seiki A, Takayabu YN (2007b) Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part II: energetics over the western and central Pacific. Mon Weather Rev 135:3346–3361. https://doi.org/10.1175/MWR3503.1

    Article  Google Scholar 

  56. Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45:3283–3287

    Article  Google Scholar 

  57. Vecchi GA, Harrison DE (2000) Tropical Pacific sea surface temperature anomalies, El Niño, and equatorial westerly wind events. J Clim 13:1814–1830

    Article  Google Scholar 

  58. Wyrtki K (1985) Water displacements in the Pacific and the genesis of El Nino cycles. J Geophys Res Atmos 90:7129–7132

    Article  Google Scholar 

  59. Zebiak SE, Cane MA (1987) A Model El Niño–Southern Oscillation. Mon Weather Rev 115:2262–2278

    Article  Google Scholar 

  60. Zou GY (2007) Toward using confidence intervals to compare correlations. Psychol Methods 12:399–413

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by Grants from the National Science Foundation (NSF) (AGS-1613318 and AGS-1338427), National Oceanic and Atmospheric Administration (NOAA) (NA14OAR4310160) and National Aeronautics Space Administration (NASA) (NNX14AM19G). N.J.B. is support by the Alfred P. Sloan Foundation as a Research Fellow. The OSCAR data were obtained from JPL Physical Oceanography DAAC and developed by ESR. GODAS data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/.HadISST1 data were provided by the U.K. Met Office Hadley Centre at https://www.metoffice.gov.uk/hadobs/hadisst/. The TropFlux data is produced under a collaboration between Laboratoire d’Océanographie: Expérimentation et Approches Numériques (LOCEAN) from Institut Pierre Simon Laplace (IPSL, Paris, France) and National Institute of Oceanography/CSIR (NIO, Goa, India), and supported by Institut de Recherche pour le Développement (IRD, France). TropFlux relies on data provided by the ECMWF Re-Analysis interim (ERA-I) and ISCCP projects.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Keri Kodama.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kodama, K., Burls, N.J. An empirical adjusted ENSO ocean energetics framework based on observational wind power in the tropical Pacific. Clim Dyn 53, 3271–3288 (2019). https://doi.org/10.1007/s00382-019-04701-8

Download citation

Keywords

  • ENSO
  • Ocean energetics
  • ENSO energetics
  • Wind power
  • Wind work