Advertisement

Evaluating reanalysis-driven CORDEX regional climate models over Australia: model performance and errors

  • Giovanni Di VirgilioEmail author
  • Jason P. Evans
  • Alejandro Di Luca
  • Roman Olson
  • Daniel Argüeso
  • Jatin Kala
  • Julia Andrys
  • Peter Hoffmann
  • Jack J. Katzfey
  • Burkhardt Rockel
Article

Abstract

The ability of regional climate models (RCMs) to accurately simulate current and future climate is increasingly important for impact assessment. This is the first evaluation of all reanalysis-driven RCMs within the CORDEX Australasia framework [four configurations of the Weather Forecasting and Research (WRF) model, and single configurations of COSMO-CLM (CCLM) and the Conformal-Cubic Atmospheric Model (CCAM)] to simulate the historical climate of Australia (1981–2010) at 50 km resolution. Simulations of near-surface maximum and minimum temperature and precipitation were compared with gridded observations at annual, seasonal, and daily time scales. The spatial extent, sign, and statistical significance of biases varied markedly between the RCMs. However, all RCMs showed widespread, statistically significant cold biases in maximum temperature which were the largest during winter. This bias exceeded − 5 K for some WRF configurations, and was the lowest for CCLM at ± 2 K. Most WRF configurations and CCAM simulated minimum temperatures more accurately than maximum temperatures, with biases in the range of ± 1.5 K. RCMs overestimated precipitation, especially over Australia’s populous eastern seaboard. Strong negative correlations between mean monthly biases in precipitation and maximum temperature suggest that the maximum temperature cold bias is linked to precipitation overestimation. This analysis shows that the CORDEX Australasia ensemble is a valuable dataset for future impact studies, but improving the representation of land surface processes, and subsequently of surface temperatures, will improve RCM performance. The varying RCM capabilities identified here serve as a foundation for the development of future regional climate projections and impact assessments for Australia.

Keywords

Australian climate CORDEX-Australasia Dynamical downscaling Model bias Precipitation Temperature 

Notes

Acknowledgements

We thank the NCAR Mesoscale and Microscale Meteorology Division for developing and maintaining WRF. We thank Marcus Thatcher and John McGregor at CSIRO Oceans and Atmosphere for developing CCAM, for help with the post-processing software to produce the CORDEX output, and for helpful discussions regarding CCAM. Logistical support was provided by the Climate Change Research Centre at the University of New South Wales, by the National Computing Infrastructure National Facility at Australian National University and by the Pawsey Supercomputing Centre. This project is supported through funding from the Earth Systems and Climate Change Hub of the Australian Government’s National Environmental Science Programme and the NSW government Office of Environment and Heritage. JK is supported by an Australian Research Council (ARC) Discovery Early Career Researcher Grant (DE170100102). AD is also supported by ARC Grant (DE170101191). RO was supported by the Basic Science Research Program through National Research Foundation of Korea (NRF-2017K1A3A7A03087790), and through the Institute for Basic Science (project code IBS-R028-D1). DA received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant agreement no. 743547. We thank two anonymous reviewers for their constructive feedback on this manuscript.

Author contributions

JE, AD, RO and DA designed and ran the UNSW WRF experiments. JK and JA ran the MU WRF experiments. PH and JJK ran the CCAM experiment. GD and JE conceived the research aims. GD designed and performed the analyses. GD prepared the manuscript with contributions from all co-authors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

382_2019_4672_MOESM1_ESM.pptx (22.7 mb)
Supplementary material 1 (PPTX 23225 KB)
382_2019_4672_MOESM2_ESM.docx (62 kb)
Supplementary material 2 (DOCX 63 KB)

References

  1. Andrys J, Lyons TJ, Kala J (2015) Multidecadal evaluation of WRF downscaling capabilities over Western Australia in simulating rainfall and temperature extremes. J Appl Meteorol Climatol 54:370–394.  https://doi.org/10.1175/jamc-d-14-0212.1 CrossRefGoogle Scholar
  2. Argueso D, Hidalgo-Munoz JM, Gamiz-Fortis SR, Esteban-Parra MJ, Dudhia J, Castro-Diez Y (2011) Evaluation of WRF parameterizations for climate studies over Southern Spain using a multistep. Region J Clim 24:5633–5651.  https://doi.org/10.1175/jcli-d-11-00073.1 CrossRefGoogle Scholar
  3. Bechtold P et al (2008) Advances in simulating atmospheric variability with the ECMWF model: from synoptic to decadal time-scales. Q J R Meteorol Soc 134:1337–1351.  https://doi.org/10.1002/qj.289 CrossRefGoogle Scholar
  4. Bucchignani E, Mercogliano P, Rianna G, Panitz HJ (2016) Analysis of ERA-Interim-driven COSMO-CLM simulations over Middle East–North Africa domain at different spatial resolutions. Int J Climatol 36:3346–3369.  https://doi.org/10.1002/joc.4559 CrossRefGoogle Scholar
  5. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597.  https://doi.org/10.1002/qj.828 CrossRefGoogle Scholar
  6. Di Luca A, de Elia R, Laprise R (2012) Potential for added value in precipitation simulated by high-resolution nested. Region Clim Models Observ Clim Dyn 38:1229–1247.  https://doi.org/10.1007/s00382-011-1068-3 Google Scholar
  7. Di Luca A, Argueso D, Evans JP, de Elia R, Laprise R (2016) Quantifying the overall added value of dynamical downscaling and the contribution from different spatial scales. J Geophys Res Atmos 121:1575–1590.  https://doi.org/10.1002/2015jd024009 CrossRefGoogle Scholar
  8. Diaconescu EP, Gachon P, Scinocca J, Laprise R (2015) Evaluation of daily precipitation statistics and monsoon onset/retreat over western Sahel in multiple data sets. Clim Dyn 45:1325–1354.  https://doi.org/10.1007/s00382-014-2383-2 CrossRefGoogle Scholar
  9. Dickinson RE et al (2006) The community land model and its climate statistics as a component of the community climate system. Model J Clim 19:2302–2324.  https://doi.org/10.1175/jcli3742.1 CrossRefGoogle Scholar
  10. Doms G, Baldauf M (2015) A description of the nonhydrostatic regional COSMO-Model Part I: dynamics and numerics. DWD, Offenbach, p 164Google Scholar
  11. Evans JP, Ekström M, Ji F (2012) Evaluating the performance of a WRF physics ensemble over South-East, Australia. Clim Dyn 39:1241–1258.  https://doi.org/10.1007/s00382-011-1244-5 CrossRefGoogle Scholar
  12. Evans JP, Ji F, Lee C, Smith P, Argüeso D, Fita L (2014) Design of a regional climate modelling projection ensemble experiment—NARCliM. Geosci Model Dev 7:621–629.  https://doi.org/10.5194/gmd-7-621-2014 CrossRefGoogle Scholar
  13. Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling International. J Climatol 27:1547–1578.  https://doi.org/10.1002/joc.1556 CrossRefGoogle Scholar
  14. Freidenreich SM, Ramaswamy V (1999) A new multiple-band solar radiative parameterization for general circulation models. J Geophys Res Atmos 104:31389–31409.  https://doi.org/10.1029/1999JD900456 CrossRefGoogle Scholar
  15. Garcia-Diez M, Fernandez J, Vautard R (2015) An RCM multi-physics ensemble over Europe: multi-variable evaluation to avoid error compensation. Clim Dyn 45:3141–3156.  https://doi.org/10.1007/s00382-015-2529-x CrossRefGoogle Scholar
  16. Giorgi F (2006) Regional climate modeling: status and perspectives. J Phys IV 139:101–118.  https://doi.org/10.1051/jp4:2006139008 Google Scholar
  17. Giorgi F, Bates GT (1989) The climatological skill of a regional model over complex terrain. Mon Weather Rev 117:2325–2347  https://doi.org/10.1175/1520-0493(1989)117%3C2325:tcsoar%3E2.0.co;2 CrossRefGoogle Scholar
  18. Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 53:175–183Google Scholar
  19. Grell GA, Freitas SR (2014) A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos Chem Phys 14:5233–5250.  https://doi.org/10.5194/acp-14-5233-2014 CrossRefGoogle Scholar
  20. Halmstad A, Najafi MR, Moradkhani H (2013) Analysis of precipitation extremes with the assessment of regional climate models over the Willamette River Basin. USA Hydrol Process 27:2579–2590.  https://doi.org/10.1002/hyp.9376 CrossRefGoogle Scholar
  21. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset International. J Climatol 34:623–642.  https://doi.org/10.1002/joc.3711 CrossRefGoogle Scholar
  22. Hattermann FF, Weiland M, Huang SC, Krysanova V, Kundzewicz ZW (2011) Model-supported impact assessment for the water sector in Central Germany under climate change—a case study. Water Resour Manag 25:3113–3134.  https://doi.org/10.1007/s11269-011-9848-4 CrossRefGoogle Scholar
  23. Hirsch AL, Pitman AJ, Seneviratne SI, Evans JP, Haverd V (2014) Summertime maximum and minimum temperature coupling asymmetry over Australia determined using WRF. Geophys Res Lett 41:1546–1552.  https://doi.org/10.1002/2013GL059055 CrossRefGoogle Scholar
  24. Hoffmann P, Katzfey JJ, McGregor JL, Thatcher M (2016) Bias and variance correction of sea surface temperatures used for dynamical downscaling. J Geophys Res Atmos 121:12877–12890.  https://doi.org/10.1002/2016jd025383 CrossRefGoogle Scholar
  25. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge, New YorkGoogle Scholar
  26. IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9781107415324 Google Scholar
  27. Ji F, Ekström M, Evans JP, Teng J (2014) Evaluating rainfall patterns using physics scheme ensembles from a regional atmospheric model. Theor Appl Climatol 115:297–304.  https://doi.org/10.1007/s00704-013-0904-2 CrossRefGoogle Scholar
  28. Jones DA, Wang W, Fawcett R (2009) High-quality spatial climate data-sets for Australia Aust. Meteorol Oceanogr J 58:233–248CrossRefGoogle Scholar
  29. Kala J, Andrys J, Lyons TJ, Foster IJ, Evans BJ (2015) Sensitivity of WRF to driving data and physics options on a seasonal time-scale for the southwest of Western Australia. Clim Dyn 44:633–659.  https://doi.org/10.1007/s00382-014-2160-2 CrossRefGoogle Scholar
  30. Katragkou E et al (2015) Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble. Geosci Model Dev 8:603–618.  https://doi.org/10.5194/gmd-8-603-2015 CrossRefGoogle Scholar
  31. Katzfey J et al (2016) High-resolution simulations for Vietnam—methodology and evaluation of current climate. Asia Pac J Atmos Sci 52:91–106.  https://doi.org/10.1007/s13143-016-0011-2 CrossRefGoogle Scholar
  32. King AD, Alexander LV, Donat MG (2013) The efficacy of using gridded data to examine extreme rainfall characteristics: a case study for Australia International. J Climatol 33:2376–2387.  https://doi.org/10.1002/joc.3588 CrossRefGoogle Scholar
  33. Kothe S, Panitz HJ, Ahrens B (2014) Analysis of the radiation budget in regional climate simulations with COSMO-CLM for Africa. Meteorol Z 23:123–141.  https://doi.org/10.1127/0941-2948/2014/0527 CrossRefGoogle Scholar
  34. Kotlarski S et al (2014) Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7:1297–1333.  https://doi.org/10.5194/gmd-7-1297-2014 CrossRefGoogle Scholar
  35. Kowalczyk E, Wang Y, Law M, L Davies R, Mcgregor HL, Abramowitz J G (2006) The CSIRO atmosphere biosphere land exchange (CABLE) model for use in climate models and as an offline model vol 1615Google Scholar
  36. Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW (2011) Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci USA 108:7460–7465.  https://doi.org/10.1073/pnas.1101377108 CrossRefGoogle Scholar
  37. Lange S, Rockel B, Volkholz J, Bookhagen B (2015) Regional climate model sensitivities to parametrizations of convection and non-precipitating subgrid-scale clouds over South America. Clim Dyn 44:2839–2857.  https://doi.org/10.1007/s00382-014-2199-0 CrossRefGoogle Scholar
  38. Laprise R (2008) Regional climate modelling. J Comput Phys 227:3641–3666.  https://doi.org/10.1016/j.jcp.2006.10.024 CrossRefGoogle Scholar
  39. Li DL et al (2018) Present climate evaluation and added value analysis of dynamically downscaled simulations of CORDEX-East Asia. J Appl Meteorol Climatol 57:2317–2341.  https://doi.org/10.1175/jamc-d-18-0008.1 CrossRefGoogle Scholar
  40. Lobell DB (2007) Changes in diurnal temperature range and national cereal yields. Agric For Meteorol 145:229–238CrossRefGoogle Scholar
  41. Maraun D et al (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48:34.  https://doi.org/10.1029/2009rg000314 CrossRefGoogle Scholar
  42. McGregor JL (1993) The CSIRO 9-level atmospheric general circulation model. CSIRO, MelbourneGoogle Scholar
  43. McGregor JL (2003) A new convection scheme using a simple closure. BMRC research report 93. Melbourne, AustraliaGoogle Scholar
  44. McGregor JL, Dix MR (2008) An updated description of the Conformal-Cubic atmospheric model. In: High resolution numerical modelling of the atmosphere and ocean. Springer, New York.  https://doi.org/10.1007/978-0-387-49791-4_4 Google Scholar
  45. Met Office (2018) Iris: a Python library for analysing and visualising meteorological and oceanographic data sets version 2.1. Exeter, DevonGoogle Scholar
  46. Moalafhi DB, Evans JP, Sharma A (2016) Evaluating global reanalysis datasets for provision of boundary conditions in regional climate modelling. Clim Dyn 47:2727–2745.  https://doi.org/10.1007/s00382-016-2994-x CrossRefGoogle Scholar
  47. Nguyen KC, Katzfey JJ, McGregor JL (2014) Downscaling over Vietnam using the stretched-grid CCAM: verification of the mean and interannual variability of rainfall. Clim Dyn 43:861–879.  https://doi.org/10.1007/s00382-013-1976-5 CrossRefGoogle Scholar
  48. Nikulin G et al (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim 25:6057–6078.  https://doi.org/10.1175/jcli-d-11-00375.1 CrossRefGoogle Scholar
  49. Olsson J, Berg P, Kawamura A (2015) Impact of RCM Spatial Resolution on the reproduction of local subdaily precipitation. J Hydrometeorol 16:534–547.  https://doi.org/10.1175/jhm-d-14-0007.1 CrossRefGoogle Scholar
  50. Panitz H-J, Dosio A, Büchner M, Lüthi D, Keuler K (2014) COSMO-CLM (CCLM) climate simulations over CORDEX-Africa domain: analysis of the ERA-Interim driven simulations at 0.44° and 0.22° resolution. Clim Dyn 42:3015–3038.  https://doi.org/10.1007/s00382-013-1834-5 CrossRefGoogle Scholar
  51. Perkins SE, Pitman AJ, Holbrook NJ, McAneney J (2007) Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J Clim 20:4356–4376.  https://doi.org/10.1175/jcli4253.1 CrossRefGoogle Scholar
  52. Raschendorfer M (2001) The new turbulence parameterization of LM. COSMO Newsl 1(1):89–97Google Scholar
  53. Ritter B, Geleyn J-F (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120:303–325CrossRefGoogle Scholar
  54. Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM(CCLM). Meteorol Z 17:347–348.  https://doi.org/10.1127/0941-2948/2008/0309 CrossRefGoogle Scholar
  55. Rotstayn LD (1997) A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: Description evaluation of the microphysical processes. Q J R Meteorol Soc 123:1227–1282.  https://doi.org/10.1002/qj.49712354106 Google Scholar
  56. Rummukainen M (2016) Added value in regional climate modeling. Wiley Interdiscip Rev Clim Chang 7:145–159.  https://doi.org/10.1002/wcc.378 CrossRefGoogle Scholar
  57. Schrodin E, Heise E (2001) The multi-layer version of the DWD Soil Model TERRA LM. COSMO Technical Report No.2, pp 16, Sep 2001, DWD, Offenbach, Germany.Google Scholar
  58. Seifert A, Beheng KD (2001) A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmos Res 59:265–281.  https://doi.org/10.1016/s0169-8095(01)00126-0 CrossRefGoogle Scholar
  59. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2008) A description of the advanced research WRF Version 3. NCAR Tech Note NCAR/TN-475 + STR. NCAR, BoulderGoogle Scholar
  60. Solman SA et al (2013) Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties. Clim Dyn 41:1139–1157.  https://doi.org/10.1007/s00382-013-1667-2 CrossRefGoogle Scholar
  61. SRB Science Team (2012) SRB data. Hampton, VA, USA.  https://doi.org/10.5067/SRB/REL3.1_LW_3HRLY_NC_L2
  62. Sunyer MA, Luchner J, Onof C, Madsen H, Arnbjerg-Nielsen K (2017) Assessing the importance of spatio-temporal RCM resolution when estimating sub-daily extreme precipitation under current and future climate conditions International. J Climatol 37:688–705.  https://doi.org/10.1002/joc.4733 CrossRefGoogle Scholar
  63. Tanré D, Geleyn J-F, Slingo J (1984) First results of the introduction of an advanced aerosol-radiation interaction in the ECMWF low resolution global model. In: Gerber HE, Deepak A (eds) Aerosols and their climatic effects. Hampton, Va, p 133Google Scholar
  64. Tebaldi C, Arblaster JM, Knutti R (2011) Mapping model agreement on future climate projections Geophys Res Lett.  https://doi.org/10.1029/2011GL049863 Google Scholar
  65. Thatcher M, McGregor JL (2009) Using a scale-selective filter for dynamical downscaling with the conformal cubic atmospheric model. Mon Weather Rev 137:1742–1752.  https://doi.org/10.1175/2008mwr2599.1 CrossRefGoogle Scholar
  66. Thevakaran A, McGregor JL, Katzfey J, Hoffmann P, Suppiah R, Sonnadara DUJ (2016) An assessment of CSIRO conformal cubic atmospheric model simulations over Sri Lanka. Clim Dyn 46:1861–1875.  https://doi.org/10.1007/s00382-015-2680-4 CrossRefGoogle Scholar
  67. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800  https://doi.org/10.1175/1520-0493(1989)117%3C1779:acmfsf%3E2.0.co;2 CrossRefGoogle Scholar
  68. Torma C, Giorgi F, Coppola E (2015) Added value of regional climate modeling over areas characterized by complex terrain—precipitation over the Alps. J Geophys Res Atmos 120:3957–3972.  https://doi.org/10.1002/2014JD022781 CrossRefGoogle Scholar
  69. Tuinenburg OA, de Vries JPR (2017) Irrigation patterns resemble ERA-interim reanalysis soil moisture additions. Geophys Res Lett 44:10341–10348.  https://doi.org/10.1002/2017gl074884 CrossRefGoogle Scholar
  70. Vautard R et al (2013) The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEV. Clim Dyn 41:2555–2575.  https://doi.org/10.1007/s00382-013-1714-z CrossRefGoogle Scholar
  71. Walsh K, McGregor J (1997) An assessment of simulations of climate variability over Australia with a limited area model. Int J Climatol 17:201–223  https://doi.org/10.1002/(sici)1097-0088(199702)17:2%3C201::aid-joc118%3E3.3.co;2-r CrossRefGoogle Scholar
  72. Wang YQ, Leung LR, McGregor JL, Lee DK, Wang WC, Ding YH, Kimura F (2004) Regional climate modeling: progress, challenges, and prospects. J Meteorol Soc Jpn 82:1599–1628.  https://doi.org/10.2151/jmsj.82.1599 CrossRefGoogle Scholar
  73. Wang YP et al (2011) Diagnosing errors in a land surface model (CABLE) in the time and frequency domains. J Geophys Res Biogeosci 116:18.  https://doi.org/10.1029/2010jg001385 Google Scholar
  74. Warrach-Sagi K, Schwitalla T, Wulfmeyer V, Bauer H-S (2013) Evaluation of a climate simulation in Europe based on the WRF–NOAH model system: precipitation in Germany. Clim Dyn 41:755–774.  https://doi.org/10.1007/s00382-013-1727-7 CrossRefGoogle Scholar
  75. Xue YK, Janjic Z, Dudhia J, Vasic R, De Sales F (2014) A review on regional dynamical downscaling in intraseasonal to seasonal simulation/prediction and major factors that affect downscaling ability. Atmos Res 147:68–85.  https://doi.org/10.1016/j.atmosres.2014.05.001 CrossRefGoogle Scholar
  76. Zheng Y, Alapaty K, Herwehe JA, Genio ADD, Niyogi D (2016) Improving high-resolution weather forecasts using the weather research and forecasting (WRF) model with an updated Kain–Fritsch scheme. Mon Weather Rev 144:833–860.  https://doi.org/10.1175/mwr-d-15-0005.1 CrossRefGoogle Scholar
  77. Zollo AL, Rillo V, Bucchignani E, Montesarchio M, Mercogliano P (2016) Extreme temperature and precipitation events over Italy: assessment of high-resolution simulations with COSMO-CLM and future scenarios International. J Climatol 36:987–1004.  https://doi.org/10.1002/joc.4401 CrossRefGoogle Scholar
  78. Zubler EM, Folini D, Lohmann U, Luthi D, Schar C, Wild M (2011) Simulation of dimming and brightening in Europe from 1958 to 2001 using a regional climate model. J Geophys Res Atmos 116:13.  https://doi.org/10.1029/2010jd015396 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Giovanni Di Virgilio
    • 1
    Email author
  • Jason P. Evans
    • 1
    • 2
  • Alejandro Di Luca
    • 1
    • 2
  • Roman Olson
    • 3
    • 4
    • 5
  • Daniel Argüeso
    • 6
  • Jatin Kala
    • 7
  • Julia Andrys
    • 7
  • Peter Hoffmann
    • 8
    • 9
  • Jack J. Katzfey
    • 8
  • Burkhardt Rockel
    • 10
  1. 1.Climate Change Research CentreUniversity of New South WalesSydneyAustralia
  2. 2.Australian Research Council Centre of Excellence for Climate ExtremesUniversity of New South WalesSydneyAustralia
  3. 3.Department of Atmospheric SciencesYonsei UniversitySeoulRepublic of Korea
  4. 4.Center for Climate PhysicsInstitute for Basic ScienceBusanRepublic of Korea
  5. 5.Pusan National UniversityBusanRepublic of Korea
  6. 6.Department of PhysicsUniversity of the Balearic IslandsPalma de MallorcaSpain
  7. 7.Environmental and Conservation SciencesMurdoch UniversityMurdoch, 6150Australia
  8. 8.Climate Science Centre-CSIRO Oceans and AtmosphereAspendaleAustralia
  9. 9.Climate Service Center Germany (GERICS), Helmholtz-Zentrum GeesthachtHamburgGermany
  10. 10.Institute of Coastal ResearchHelmholtz-Zentrum GeesthachtGeesthachtGermany

Personalised recommendations