Improved decadal prediction of Northern-Hemisphere summer land temperature

Abstract

The prediction of multiyear to decadal climate variability is important for stakeholders and decision-makers who are engaged in near-term planning activities. The decadal climate prediction experiments (DPEs) by predicting near-term climate with initialized global climate models (GCMs) provide robust skill at predicting sea surface temperature variability in some ocean regions as the North Atlantic. However, the state-of-the-art DPEs, which reproduce the observed warming trend associated with forced climate change, fail at predicting land surface air temperature (SAT) interdecadal variability. Here, we develop an effective statistical-dynamical model to predict spatial and temporal evolutions in Northern-Hemisphere (NH) summer land SAT. We identify two dominant interdecadal variability modes of the NH summer land SAT, whose evolutions are synchronized with forced climate change and Atlantic multidecadal variability (AMV), respectively. Based on statistical relationships with physical interpretations, time series of the forced responses and the AMV skillfully predicted by GCMs, the land SAT over the past one hundred years is predicted retrospectively with significantly improved skill compared to that predicted by the DPEs. Our results indicate that the decadal variability of the NH land SAT is predictable, with predictability rooted in atmospheric interdecadal circumglobal teleconnection (CGT) forced by the AMV. More skillful NH climate prediction by DPEs, which would be more practical for stakeholders and decision-makers, can be achieved by improving interdecadal CGT simulations in GCMs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Bellucci A, Haarsma R, Bellouin N (2015) Advancements in decadal climate predictability: the role of nonoceanic drivers. Rev Geophys 53:165–202

    Article  Google Scholar 

  2. Boer GJ et al (2016) The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geosci Model Dev 9:1–27

    Article  Google Scholar 

  3. Compo GP et al (2011) The twentieth century reanalysis project. Q J Roy Meteorol Soc 137:1–28

    Article  Google Scholar 

  4. Ding QH, Wang B (2005) Circumglobal teleconnection in the Northern Hemisphere summer. J Clim 18:3483–3505

    Article  Google Scholar 

  5. Ding QH, Wang B, Wallace JM, Branstator G (2011) Tropical–extratropical teleconnections in boreal summer: observed interannual variability. J Clim 24:1878–1896

    Article  Google Scholar 

  6. Doblas-Reyes FJ, Andreu-Burillo I, Chikamoto Y, Garcia-Serrano J, Guemas V, Kimoto M, Mochizuki T, Rodrigues LRL, van Oldenborgh GJ (2013) Initialized near-term regional climate change prediction. Nat Commun 4:1078–1090

    Article  Google Scholar 

  7. García-Serrano J, Guemas V, Doblas-Reyes FJ (2015) Added-value from initialization in predictions of Atlantic multi-decadal variability. Clim Dyn 44:2539–2555

    Article  Google Scholar 

  8. Ghosh R, Müller WA, Bader J, Baehr J (2016) Impact of observed North Atlantic multidecadal variations to European summer climate: a linear baroclinic response to surface heating. Clim Dyn 48:3547–3563

    Article  Google Scholar 

  9. Goddard L, Kumar A, Solomon A, Smith D, Boer G, Gonzalez P, Kharin V, Merryfield W, Deser C, Mason SJ, Kirtman BP, Msadek R, Sutton R, Hawkins E, Fricker T (2013) A verification framework for interannual-to-decadal predictions experiments. Clim Dyn 40:245–272

    Article  Google Scholar 

  10. Gray LJ et al (2010) Solar influences on climate. Rev Geophys 48:RG4001. https://doi.org/10.1029/2009RG000282

    Article  Google Scholar 

  11. Harris I, Jones PD, Osborn TJ, Lister DH (2013) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Climatol 34:623–642

    Article  Google Scholar 

  12. Hawkins E, Sutton R (2011) The potential to narrow uncertainty in projections of regional precipitation change. Clim Dyn 37:407–418

    Article  Google Scholar 

  13. Ineson S et al (2011) Solar forcing of winter climate variability in the Northern Hemisphere. Nat Geosci 4:753–757

    Article  Google Scholar 

  14. Ji F, Wu Z, Huang J, Chassignet EP (2014) Evolution of land surface air temperature trend. Nat Clim Change 4:462–466

    Article  Google Scholar 

  15. Karspeck A, Yeager S, Danabasoglu G, Teng H (2014) An evaluation of experimental decadal predictions using CCSM4. Clim Dyn 44:907–923

    Article  Google Scholar 

  16. Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88

    Article  Google Scholar 

  17. Kirtman B et al (2013) Climate change (2013) the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 953–1028 Chap. 11

    Google Scholar 

  18. Li J, Wang B (2016) How predictable is the anomaly pattern of the Indian summer rainfall? Clim Dyn 46:2847–2861

    Article  Google Scholar 

  19. Li J, Wang B (2018) Origins of the decadal predictability of east Asian land summer monsoon rainfall. J Clim 31:6229–6243

    Article  Google Scholar 

  20. Lin J, Wu B, Zhou T (2016) Is the interdecadal circumglobal teleconnection pattern excited by the Atlantic multidecadal Oscillation? Atmos Oceanic Sci Lett 9:451–457

    Article  Google Scholar 

  21. Liu ZY (2012) Dynamics of interdecadal climate variability: a historical perspective. J Clim 25:1963–1995

    Article  Google Scholar 

  22. Maher N, McGregor S, England MH, Sen Gupta A (2015) Effects of volcanism on tropical variability. Geophys Res Lett 42:6024–6033

    Article  Google Scholar 

  23. Meehl GA (2007) Climate Change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 747–846 (Chap. 10)

    Google Scholar 

  24. Meehl GA, Washington WM, Ammann CM, Arblaster JM, Wigley TML, Tebaldi C (2004) Combinations of natural and anthropogenic forcings in twentieth-century climate. J Clim 17:3721–3727

    Article  Google Scholar 

  25. Meehl GA, Goddard L, Murphy J, Stouffer RJ, Boer G, Danabasoglu G, Dixon K, Giorgetta MA, Greene AM, Hawkins E, Hegerl G, Karoly D, Keenlyside N, Kimoto M, Kirtman B, Navarra A, Pulwarty RS, Smith D, Stammer D, Stockdale T (2009) Decadal prediction: can it be skillful? Bull Am Meteor Soc 90:1467–1485

    Article  Google Scholar 

  26. Meehl GA et al (2014) Decadal climate prediction: an update from the trenches. Bull Am Meteor Soc 95:243 – 267

    Article  Google Scholar 

  27. Meehl GA, Teng H, Maher N, England MH (2015) Effects of the Mt. Pinatubo eruption on decadal climate prediction skill. Geophys Res Lett 42:10840–10846

    Article  Google Scholar 

  28. Merryfield WJ et al (2013) The Canadian seasonal to interannual prediction system. Part I: Models and initialization. Mon Wea Rev 141:2910–2945

    Article  Google Scholar 

  29. Michaelsen J (1987) Cross-validation in statistical climate forecast models. J Climate Appl Meteor 26:1589–1600

    Article  Google Scholar 

  30. Mochizuki T, Wallace JM (2010) Pacific decadal oscillation hindcasts relevant to near-term climate prediction. Proc Natl Acad Sci 107:1833–1837

    Article  Google Scholar 

  31. Monerie PA, Robson J, Dong B, Dunstone N (2018) A role of the Atlantic Ocean in predicting summer surface air temperature over North East. Asia? Clim Dyn 51:473–491

    Article  Google Scholar 

  32. Müller WA, Baehr J, Haak H, Jungclaus JH, Kröger J, Matei D, Notz D, Pohlmann H, von Storch JS, Marotzke J (2012) Forecast skill of multi-year seasonal means in the decadal prediction system of the Max Planck Institute for Meteorology. Geophys Res Lett 39:L22707

    Google Scholar 

  33. Müller WA, Pohlmann H, Sienz F, Smith D (2014) Decadal climate predictions for the period 1901–2010 with a coupled climate model. Geophys Res Lett 41:2100–2107

    Article  Google Scholar 

  34. North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Wea Rev 110:699–706

    Article  Google Scholar 

  35. Pohlmann H, Jungclaus JH, Koehl A, Stammer D, Marotzke J (2009) Initializing decadal climate predictions with the GECCO oceanic synthesis: effects on the North Atlantic. J Clim 22:3926–3938

    Article  Google Scholar 

  36. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407

    Article  Google Scholar 

  37. Robson J, Sutton R, Smith D (2014) Decadal predictions of the cooling and freshening of the North Atlantic in the 1960s and the role of ocean circulation. Clim Dyn 42:1–13

    Article  Google Scholar 

  38. Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799

    Article  Google Scholar 

  39. Smith DM, Eade R, Pohlmann H (2013) A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Clim Dyn 41:3325–3338

    Article  Google Scholar 

  40. Sun C, Li J, Zhao S (2015) Remote influence of Atlantic multidecadal variability on Siberian warm season precipitation. Sci Rep 5:1685

    Google Scholar 

  41. Sutton RT, Hodson DLR (2005) Atlantic ocean forcing of North American and European summer climate. Science 309:115–118

    Article  Google Scholar 

  42. Takaya K, Nakamura H (2001) A formulation of phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci 58:608–627

    Article  Google Scholar 

  43. Tatebe H et al (2012) Initialization of the climate model MIROC for decadal prediction with hydrographic data assimilation. J Meteorol Soc Jpn 90A:275–294

    Article  Google Scholar 

  44. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93:485–498

    Article  Google Scholar 

  45. Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33:L12704

    Article  Google Scholar 

  46. van Oldenborgh GJ, Doblas-Reyes FJ, Wouters B, Hazeleger W (2012) Decadal prediction skill in a multi-model ensemble. Clim Dyn 38:1263–1280

    Article  Google Scholar 

  47. Wang B, Lee JY, Xiang B (2015) Asian summer monsoon rainfall predictability: a predictable mode analysis. Clim Dyn 44:61–74

    Article  Google Scholar 

  48. Wang L, Xu P, Chen W, Liu Y (2017) Interdecadal variations of the Silk Road pattern. J Clim 30:9915–9932

    Article  Google Scholar 

  49. Wang B et al (2018) Towards predicting changes in the land monsoon rainfall a decade in advance. J Clim 31:2699–2714

    Article  Google Scholar 

  50. WCRP (2011) Data and bias correction for decadal climate predictions. International CLIVAR Project Office Publication Series 150. https://www.wcrp-climate.org/decadal/references/DCPP_Bias_Correction.pdf

  51. Willmott CJ, Matsuura K (2001) Terrestrial air temperature and precipitation: monthly and annual time series (1950–1999), http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.html

  52. Wu B, Zhou T, Li T (2016a) Impacts of the Pacific–Japan and circumglobal teleconnection patterns on interdecadal variability of the East Asian summer monsoon. J Clim 29:3253–3271

    Article  Google Scholar 

  53. Wu B, Lin J, Zhou T (2016b) Interdecadal circumglobal teleconnection pattern during boreal summer. Atmos Sci Let 17:446–452

    Article  Google Scholar 

  54. Yang X et al (2013) A predictable AMV-like pattern in GFDL’s fully-coupled ensemble initialization and decadal forecasting system. J Clim 26:650–661

    Article  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous reviewers for their constructive comments that helped greatly to improve the original manuscript. This work is jointly supported by National Key Research and Development Program of China (Grant no. 2018YFA0606301), the NSFC (Grant nos. 41675089, 41661144009). This work was supported by the Jiangsu Collaborative Innovation Center for Climate Change.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bo Wu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, B., Zhou, T., Li, C. et al. Improved decadal prediction of Northern-Hemisphere summer land temperature. Clim Dyn 53, 1357–1369 (2019). https://doi.org/10.1007/s00382-019-04658-8

Download citation