North Pacific temperature and precipitation response to El Niño-like equatorial heating: sensitivity to forcing location

Abstract

This study investigates the sensitivity of oceanic and atmospheric response in the extra-tropics, especially in the North Pacific, to the position of equatorial El Niño-like heating within a slab-ocean climate model. In a suite of numerical experiments, we impose an idealized equatorial sea surface temperature (SST) anomaly in the Pacific and systematically vary its longitudinal position along the equator to mimic different “flavors” of El Niño. We find that regardless of the forcing location, the induced SST pattern closely resembles a positive phase of the Pacific Decadal Oscillation with a characteristic warming along the North American coast as part of an arc-shaped pattern, accompanied by wind anomalies around the Aleutian low. However, the extent and magnitude of the coastal warming vary nonmonotonically when the forcing shifts westward along the equator. The strongest response is found when the equatorial forcing is located in the central Pacific close to the Dateline. In contrast, precipitation response over Southern California is strongest for an eastern Pacific warming centered at 150°W, even though its magnitude is highly uncertain since the boundary between dry and wet precipitation anomalies passes through this region. We repeat the experiments for cold (i.e. La Niña-like) anomalies and observe a significant asymmetry in the SST and atmospheric response between the warm and cold cases. Finally, our experiments suggest that tropical heating (or cooling) over the Western Pacific warm pool generates the largest tropical rainfall response and hence the largest global-mean SST anomaly.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Amaya DJ, Bond NE, Miller AJ, DeFlorio MJ (2016) The evolution and known atmospheric forcing mechanisms behind the 2013–2015 North Pacific warm anomalies. US CLIVAR Var 14(2):1–6. https://usclivar.org/newsletter/newsletters

  2. An SI, Ham YG, Kug JS, Jin FF, Kang JS (2005) El Niño–La Niña asymmetry in the coupled model intercomparison project simulations. J Clim 18(14):2617–2627. https://doi.org/10.1175/JCLI3433.1

    Article  Google Scholar 

  3. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. https://doi.org/10.1029/2006JC003798

    Article  Google Scholar 

  4. Bond NA, Overland JE, Spillane M, Stabeno P (2003) Recent shifts in the state of the North Pacific. Geophys Res Lett 30(23):2183. https://doi.org/10.1029/2003GL018597

    Article  Google Scholar 

  5. Bond NA, Cronin MF, Freeland H, Mantua N (2015) Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys Res Lett 42:3414–3420. https://doi.org/10.1002/2015GL063306

    Article  Google Scholar 

  6. Bryson RA, Hare FK (1974) Climates of North America, World Survey of Climatology, vol 11. Elsevier, Amsterdam

    Google Scholar 

  7. Burgers G, Stephenson DB (1999) The “normality” of El Niño. Geophys Res Lett 26(8):1027–1030. https://doi.org/10.1029/1999GL900161

    Article  Google Scholar 

  8. Cai W, Cowan T (2009) La Niña Modoki impacts Australia autumn rainfall variability. Geophys Res Lett 36:L12805

    Article  Google Scholar 

  9. Cai W et al (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Change 4(2):111–116

    Article  Google Scholar 

  10. Capotondi A et al (2015) Understanding ENSO diversity. Bull Am Meteorol Soc 96(6):921–938

    Article  Google Scholar 

  11. Chiang J, Vimont D (2004) Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J Clim 17:4143–4158

    Article  Google Scholar 

  12. Clarke AJ (2008) An introduction to the dynamics of El Nino and the southern oscillation. Academic Press, London

    Google Scholar 

  13. Danabasoglu G, Gent PR (2009) Equilibrium climate sensitivity: Is it accurate to use a slab ocean model? J Clim 22(9):2494–2499

    Article  Google Scholar 

  14. Di Lorenzo E, Mantua N (2016) Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat Clim Change 6(11):1042–1047

    Article  Google Scholar 

  15. Di Lorenzo E, Cobb KM, Furtado JC, Schneider N, Anderson BT, Bracco A, Alexander MA, Vimont DJ (2010) Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nat Geosci 3:762–765

    Article  Google Scholar 

  16. Dommenget D, Bayr T, Frauen C (2013) Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation. Clim Dyn 40:2825–2847

    Article  Google Scholar 

  17. Fedorov AV, Hu S, Lengaigne M, Guilyardi E (2015) The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Clim Dyn 44(5–6):1381–1401

    Article  Google Scholar 

  18. Feng J, Wu Z, Zou X (2014) Sea surface temperature anomalies off Baja California: a possible precursor of ENSO. J Atmos Sci 71:1529–1537

    Article  Google Scholar 

  19. Feng J, Chen W, Li YJ (2017) Asymmetry of the winter extra-tropical teleconnections in the Northern Hemisphere associated with two types of ENSO. Clim Dyn 48:2135–2151

    Article  Google Scholar 

  20. Furtado JC, Di Lorenzo E, Anderson BT, Schneider N (2012) Linkages between the North Pacific Oscillation and central tropical Pacific SSTs at low frequencies. Clim Dyn 39:2833–2846

    Article  Google Scholar 

  21. Graf HF, Zanchettin D (2012) Central Pacific El Niño, the “subtropical bridge,” and Eurasian climate. J Geophys Res Atmos 117(D1):D01102. https://doi.org/10.1029/2011JD016493

    Article  Google Scholar 

  22. Hartmann DL (2015) Pacific sea surface temperature and the winter of 2014. Geophys Res Lett 42:1894–1902

    Article  Google Scholar 

  23. Higgins RW, Chen Y, Douglas AV (1999) Interannual variability of the North American warm season precipitation regime. J Clim 12:653–680

    Article  Google Scholar 

  24. Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim 10(8):1769–1786

    Article  Google Scholar 

  25. Hu S, Fedorov AV (2016) Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc Natl Acad Sci USA 113(8):2005–2010

    Article  Google Scholar 

  26. Hu S, Fedorov AV (2017a) The extreme El Niño of 2015–2016: the role of westerly and easterly wind bursts, and preconditioning by the failed 2014 event. Clim Dyn. https://doi.org/10.1007/s00382-017-3531-2

    Article  Google Scholar 

  27. Hu S, Fedorov AV (2017b) The extreme El Niño of 2015–2016 and the end of global warming hiatus. Geophys Res Lett 44(8):3816–3824

    Article  Google Scholar 

  28. Hu S, Fedorov AV (2018) Cross-equatorial winds control El Niño diversity and change. Nat Clim Change 8(9):798–802

    Article  Google Scholar 

  29. Hu S, Fedorov AV, Lengaigne M, Guilyardi E (2014) The impact of westerly wind bursts on the diversity and predictability of El Niño events: an ocean energetics perspective. Geophys Res Lett 41(13):4654–4663

    Article  Google Scholar 

  30. Hu ZZ, Kumar A, Jha B, Zhu JS, Huang BH (2017) Persistence and predictions of the remarkable warm anomaly in the northeastern Pacific Ocean during 2014–16. J Clim 30(2):689–702

    Article  Google Scholar 

  31. Jacox M et al (2016) Impacts of the 2015–2016 El Niño on the California current system: early assessment and comparison to past events. Geophys Res Lett 43:7072–7080

    Article  Google Scholar 

  32. Jin FF, An SI, Timmermann A, Zhao JX (2003) Strong El Niño events and nonlinear dynamical heating. Geophys Res Lett 30(3):1120. https://doi.org/10.1029/2002GL016356

    Article  Google Scholar 

  33. Joh Y, Di Lorenzo E (2017) Increasing coupling between NPGO and PDO leads to prolonged marine heatwaves in the Northeast Pacific. Geophys Res Lett 44(22):11663–11671. https://doi.org/10.1002/2017GL075930

    Article  Google Scholar 

  34. Jones C (2000) Occurrence of extreme precipitation events in California and relationships with the Madden–Julian oscillation. J Clim 13(20):3576–3587

    Article  Google Scholar 

  35. Kang IS, Kug JS (2002) El Niño and La Niña sea surface temperature anomalies: asymmetry characteristics associated with their wind stress anomalies. J Geophys Res 107(19):4372. https://doi.org/10.1029/2001JD000393

    Article  Google Scholar 

  36. Kao HY, Yu JY (2009) Contrasting eastern Pacific and central Pacific types of ENSO. J Clim 22:615–632

    Article  Google Scholar 

  37. Kosaka Y, Xie SP (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501(7467):403–407

    Article  Google Scholar 

  38. Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515. https://doi.org/10.1175/2008JCLI2624.1

    Article  Google Scholar 

  39. Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32:L16705. https://doi.org/10.1029/2005GL022860

    Article  Google Scholar 

  40. Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37:L14603. https://doi.org/10.1029/2010GL044007

    Article  Google Scholar 

  41. Lee SK, Wang C, Mapes BE (2009) A simple atmospheric model of the local and teleconnection responses to tropical heating anomalies. J Clim 22:272–284

    Article  Google Scholar 

  42. Lee SK, Lopez H, Chung ES, DiNezio P, Yeh SW, Wittenberg AT (2018) On the fragile relationship between El Niño and California rainfall. Geophys Res Lett 45(2):907–915

    Article  Google Scholar 

  43. Liang YC, Yu JY, Saltzman ES, Wang F (2017) Linking the tropical Northern Hemisphere pattern to the Pacific warm blob and Atlantic cold blob. J Clim 30(22):9041–9057

    Article  Google Scholar 

  44. McCabe GJ, Dettinger MD (1999) Decadal variations in the strength of ENSO teleconnections with precipitation in the western United States. Int J Climatol 19(13):1399–1410

    Article  Google Scholar 

  45. McPhaden MJ (2012) A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys Res Lett 39:L09706. https://doi.org/10.1029/2012gl051826

    Article  Google Scholar 

  46. McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in Earth science. Science 314:1740–1745

    Article  Google Scholar 

  47. Medred C (2014) Unusual species in Alaska waters indicate parts of Pacific warming dramatically. Alaska Dispatch News. http://www.adn.com/article/20140914/unusual-speciesalaska-waters-indicate-parts-pacific-warming-dramatically. Accessed 14 Sept 2014

  48. Mitchell TP, Blier W (1997) The variability of wintertime precipitation in the region of California. J Clim 10:2261–2276

    Article  Google Scholar 

  49. Mo KC (2010) Interdecadal modulation of the impact of ENSO on precipitation and temperature over the United States. J Clim 23:3639–3656. https://doi.org/10.1175/2010JCLI3553.1

    Article  Google Scholar 

  50. Mo KC, Higgins RW (1998) Tropical influences on California precipitation. J Clim 11(3):412–430

    Article  Google Scholar 

  51. Neelin JD, Battisti DS, Hirst AC, Jin FF, Wakata Y, Yamagata T, Zebiak SE (1998) ENSO theory. J Geophys Res 103:14261–14290

    Article  Google Scholar 

  52. Null J (1993) Relationships between type 1 ENSO events and California rainfall, 1949–1991. In: Eighth conference on applied climatology. American Meteorological Society, Anaheim, CA, pp 82–88 (preprints)

  53. Penland C, Sardeshmukh PD (1995) The optimal growth of tropical sea surface temperature anomalies. J Clim 8:1999–2024

    Article  Google Scholar 

  54. Philander SG (1990) El Niño, La Niña, and the southern oscillation, International geophysics series, vol 46. Academic Press, San Diego

    Google Scholar 

  55. Ralph FM et al (2003) The impact of a prominent rain shadow on flooding in California’s Santa Cruz Mountains: a CALJET case study and sensitivity to the ENSO cycle. J Hydrometeorol 4(6):1243–1264

    Article  Google Scholar 

  56. Raphael M, Mills G (1996) The role of mid-latitude cyclones in the winter precipitation of California. Prof Geogr 48:251–262

    Article  Google Scholar 

  57. Ropelewski CF, Halpert MS (1986) North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon Weather Rev 114(12):2352–2362

    Article  Google Scholar 

  58. Sarachik ES, Cane MA (2010) The El Niño-Southern oscillation phenomenon. Cambridge University Press, Cambridge

    Google Scholar 

  59. Schonher T, Nicholson SE (1989) The relationships between California rainfall and ENSO events. J Clim 2:1258–1269

    Article  Google Scholar 

  60. Seager R et al (2015) Causes of the 2011–14 California drought. J Clim 28:6997–7024

    Article  Google Scholar 

  61. Shi J, Qian WH (2018) Asymmetry of two types of ENSO in the transition between the East Asian winter monsoon and the ensuing summer monsoon. Clim Dyn. https://doi.org/10.1007/s00382-018-4119-1

    Article  Google Scholar 

  62. Trenberth KE, Caron JM, Stepaniak DP, Worley S (2002) Evolution of El Niño-Southern Oscillation and global atmospheric surface temperatures. J Geophys Res 107(D8):4065. https://doi.org/10.1029/2000JD000298

    Article  Google Scholar 

  63. Tseng YH, Ding RQ, Huang XM (2017) The warm Blob in the northeast Pacific—the bridge leading to the 2015/16 El Niño. Environ Res Lett 12(5):054019

    Article  Google Scholar 

  64. Vimont DJ (2010) Transient growth of thermodynamically coupled variations in the tropics under an equatorially symmetric mean. J Clim 23:5771–5789

    Article  Google Scholar 

  65. Wang X, Wang C (2014) Different impacts of various El Niño events on the Indian Ocean Dipole. Clim Dyn 42:991–1005

    Article  Google Scholar 

  66. Wang SY, Hipps L, Gillies RR, Yoon JH (2014) Probable causes of the abnormal ridge accompanying the 2013–2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophys Res Lett 41:3220–3226

    Article  Google Scholar 

  67. Weng H, Ashok K, Behera SK, Rao SA (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific Rim during boreal summer. Clim Dyn 29:113–129

    Article  Google Scholar 

  68. Whitney FA (2015) Anomalous winter winds decrease 2014 transition zone productivity in the NE Pacific. Geophys Res Lett 42:428–431

    Article  Google Scholar 

  69. Wu B, Li T, Zhou TJ (2010) Asymmetry of atmospheric circulation anomalies over the western North Pacific between El Niño and La Niña. J Clim 23(18):4807–4822. https://doi.org/10.1175/2010JCLI3222.1

    Article  Google Scholar 

  70. Xie SP (1999) A dynamic ocean-atmosphere model of the tropical Atlantic decadal variability. J Clim 12:64–70

    Article  Google Scholar 

  71. Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461:511–514

    Article  Google Scholar 

  72. Yu JY, Kao HY (2007) Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J Geophys Res 112:D13106. https://doi.org/10.1029/2006JD007654

    Article  Google Scholar 

  73. Yu JY, Kim ST (2011) Relationship between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J Clim 24:708–720

    Article  Google Scholar 

  74. Yu JY, Zou Y (2013) The enhanced drying effect of central-Pacific El Niño on US winter. Environ Res Lett 8:014019. https://doi.org/10.1088/1748-9326/8/1/014019

    Article  Google Scholar 

  75. Yu JY, Zou Y, Kim ST, Lee T (2012) The changing impact of El Niño on US winter temperatures. Geophys Res Lett 39(15):L15702. https://doi.org/10.1029/2012GL052483

    Article  Google Scholar 

  76. Zhang WJ, Jin FF, Zhao JX, Qi L, Ren HL (2013) The possible influence of a nonconventional El Niño on the severe autumn drought of 2009 in southwest China. J Clim 26:8392–8405

    Article  Google Scholar 

  77. Zhang T, Perlwitz J, Hoerling MP (2014) What is responsible for the strong observed asymmetry in teleconnections between El Niño and La Niña? Geophys Res Lett 41:1019–1025

    Article  Google Scholar 

  78. Zhang RH, Li TR, Wen M, Liu L (2015a) Role of intraseasonal oscillation in asymmetric impacts of El Niño and La Niña on the rainfall over southern China in boreal winter. Clim Dyn 45:559–567

    Article  Google Scholar 

  79. Zhang WJ, Wang L, Xiang BQ, Qi L, He JH (2015b) Impacts of two types of La Niña on the NAO during boreal winter. Clim Dyn 44:1351–1366. https://doi.org/10.1007/s00382-014-2155-z

    Article  Google Scholar 

  80. Zheng J, Liu Q, Wang C, Zheng XT (2013) Impact of heating anomalies associated with rainfall variations over the Indo-Western Pacific on Asian atmospheric circulation in winter. Clim Dyn 40:2023–2033

    Article  Google Scholar 

  81. Zheng XT, Xie SP, Lv LH, Zhou ZQ (2016) Intermodel uncertainty in ENSO amplitude change tied to Pacific Ocean warming pattern. J Clim 29:7265–7279. https://doi.org/10.1175/JCLI-D-16-0039.1

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their constructive comments and thoughtful suggestions, which led to significant improvements in this paper. This research is supported by Grants to A. V. F. from NASA (NNX17AH21G) and NSF (AGS-0163807). S. H. is supported by the Scripps Institutional Postdoctoral Fellowship. J. S. is supported by the funding from the National Natural Science Foundation of China (41775067) and the China Scholarship Council (CSC) (201706010029). We also thank the Yale Center for Research Computing (YCRC).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jian Shi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Fedorov, A.V. & Hu, S. North Pacific temperature and precipitation response to El Niño-like equatorial heating: sensitivity to forcing location. Clim Dyn 53, 2731–2741 (2019). https://doi.org/10.1007/s00382-019-04655-x

Download citation

Keywords

  • ENSO
  • El Niño flavors
  • El Niño teleconnection
  • Pacific Decadal Oscillation
  • Sea surface temperature
  • Southern California precipitation