Bias adjustment for decadal predictions of precipitation in Europe from CCLM

Abstract

A cross-validated model output statistics (MOS) approach is applied to precipitation data from the high-resolution regional climate model CCLM for Europe. The aim is to remove systematic errors of simulated precipitation in decadal climate predictions. We developed a two-step bias-adjustment approach. In step one, we estimate model errors based on a long-term ‘CCLM assimilation run’ (regionalizing data from a global assimilation run) and observational data. In step two, the resulting transfer function is applied to the complete set of decadal hindcast simulations (285 individual runs). In contrast to lead-time-dependent bias-adjustment approaches, this one is designed for variables with poor decadal prediction skill and without dominant lead-time-dependent bias. In terms of the CCLM assimilation run, MOS is shown to be effective in predictor selection, model skill improvement, and model bias reduction. Yet, the positive effect of MOS correction is accompanied with an underestimation of precipitation variability. After MOS application, an estimated mean square skill score of more than 0.5 is observed regionally. Simulated precipitation in decadal hindcasts is further improved when the MOS is trained on the basis of other decadal hindcasts from the same regional climate model but with a large underestimation in forecast uncertainty. Our results suggest that the MOS system derived from the assimilation run is less effective but allows the potential climate predictability in decadal hindcasts and forecasts to be retained. Using hindcasts itself for training is recommended unless a statistical method is capable of distinguishing biases and predictions within a hindcasts dataset.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Balmaseda MA et al (2015) The ocean reanalyses intercomparison project (ORA-IP). J Oper Oceanogr. https://doi.org/10.1080/1755876X.2015.1022329

    Google Scholar 

  2. Boer GJ, Smith DM, Cassou C, Doblas-Reyes F, Danabasoglu G, Kirtman B, Kushnir Y, Kimoto M, Meehl GA, Msadek R, Mueller WA, Taylor KE, Zwiers F, Rixen M, Ruprich-Robert Y, Eade R (2016) The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geosci Model Dev 9:3751–3777. https://doi.org/10.5194/gmd-9-3751-2016

    Article  Google Scholar 

  3. Buizza R, Richardson D (2017) 25 years of ensemble forecasting at ECMWF. ECMWF Newsl 153:20–31. https://doi.org/10.21957/bv418o

    Google Scholar 

  4. Cannon A (2016) Multivariate bias correction of climate model output: matching marginal distributions and intervariable dependence structure. J Clim 29:7045–7064. https://doi.org/10.1175/JCLI-D-15-0679.1

    Article  Google Scholar 

  5. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qi.828

    Article  Google Scholar 

  6. Fuckar NS, Volpi D, Guemas V, Doblas-Reyes FJ (2014) A posteriori adjustment of near-term climate predictions: accounting for the drift dependence on the initial conditions. Geophys Res Lett 41:5200–5207. https://doi.org/10.1002/2014GL060815

    Article  Google Scholar 

  7. Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Boettinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg H-D, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six KD, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners K-H, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5: climate changes in MPI-ESM. J Adv Model Earth Syst 5:572–579. https://doi.org/10.1002/jame.20038

    Article  Google Scholar 

  8. Goddard L et al (2013) A verification framework for interannual-to-decadal predictions experiments. Clim Dyn 40:245–272. https://doi.org/10.1007/s00382-012-1481-2

    Article  Google Scholar 

  9. Gonzalez PLM, Goddard L (2016) Long-lead ENSO predictability from CMIP5 decadal hindcasts. Clim Dyn 46:3127–3147. https://doi.org/10.1007/s00382-015-2757-0

    Article  Google Scholar 

  10. Hawkins E, Smith RS, Gregory JM, Stainforth DA (2016) Irreducible uncertainty in near-term climate projections. Clim Dyn 46:38–47. https://doi.org/10.1007/s00382-015-2806-8

    Article  Google Scholar 

  11. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res 113:D20119. https://doi.org/10.1029/2008JD10201

    Article  Google Scholar 

  12. Hudson D, Alves O, Hendon HH, Marshall AG (2011) Bridging the gap between weather and seasonal forecasting: intraseasonal forecasting for Austrialia. Q J R Meteorol Soc 137:673–689

    Article  Google Scholar 

  13. Illing S, Kadow C, Kunst O, Cubasch U (2014) MurCSS: a tool for standardized evaluation of decadal hindcast systems. J Open Res Softw 2:e24. https://doi.org/10.5334/jors.bf

    Google Scholar 

  14. Jungclaus JH, Fischer N, Haak H, Lohmann K, Marotzke J, Matei D, Mikolajewicz U, Notz D, von Storch JS (2013) Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model: MPIOM CMIP5 Ocean Simulations. J Adv Model Earth Syst 5:422–446. https://doi.org/10.1002/jame.20023

    Article  Google Scholar 

  15. Kadow C, Illing S, Kunst O, Rust HW, Pohlmann H, Mueller WA, Cubasch U (2015) Evaluation of forecasts by accuracy and spread in the MiKlip decadal climate prediction system. Meteorol Z 25:631–643. https://doi.org/10.1127/metz/2015/0639

    Article  Google Scholar 

  16. Kadow C, Illing S, Kroener I, Ulbrich U, Cubasch U (2017) Decadal climate predictions improved by ocean ensemble dispersion filtering. J Adv Model Earth Syst 9:1138–1149. https://doi.org/10.1002/2016MS000787

    Article  Google Scholar 

  17. Kharin VV, Merryfield GJ, Merryfield WJ, Scinocca JF, Lee W-S (2012) Statistical adjustment of decadal predictions in a changing climate. Geophys Res Lett 39:L19705. https://doi.org/10.1029/2012GL052647

    Article  Google Scholar 

  18. Kirshnamurti TN, Kishtawal CM, LaRow TE, Bachiochi DR, Zhang Z, Williford CE, Gadgil S, Surendran S (1999) Improved weather and seasonal climate forecasts from multimodel superensemble. Nature 285:1548–1550

    Google Scholar 

  19. Kruschke T, Rust HW, Kadow C, Mueller WA, Pohlmann H, Leckebusch GC, Ulbrich U (2015) Probabilistic evaluation of decadal prediction skill regarding Northern Hemisphere winter storms. Meteorol Z 25:721–738

    Article  Google Scholar 

  20. Li H, Sheffield J, Wood EF (2010) Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J Geophys Res 115:D10101. https://doi.org/10.1029/2009JD012882

    Article  Google Scholar 

  21. Marotzke J, Mueller WA, Vamborg FSE, Becker P, Cubasch U, Feldmann H, Kaspar F, Kottmeier C, Marini C, Polkova I, Proemmel K, Rust HW, Stammer D, Ulbrich U, Kadow C, Koehl A, Kroeger J, Kruschke T, Pinto JG, Pohlmann H, Reyers M, Schroeder M, Sienz F, Timmreck C, Ziese M (2016) MiKlip—a national research project on decadal climate predition. Bull Am Meteorol Soc. https://doi.org/10.1175/BAMS-D-15-00184.1

    Google Scholar 

  22. Meehl GAL et al (2014 Decadal climate prediction: an update from the trenches. Bull Am Meteorol Soc 95:243–267. https://doi.org/10.1175/BAMS-D-12-00241.1

    Article  Google Scholar 

  23. Mieruch S, Feldmann H, Schaedler S, Lenz C-J, Kothe S, Kottmeier C (2014) The regional MiKlip decadal forecast ensemble for Europe: the added value of downscaling. Geosci Model Dev 7:2983–29999. https://doi.org/10.5194/gmd-7-2983-2014

    Article  Google Scholar 

  24. Müller WA, Baehr J, Haak H, Jungclaus JH, Kroeger J, Matei D, Notz D, Pohlmann H, von Storch J-S, Marotzke J (2012) Forecast skill of multi-year seasonal means in the decadal prediction system of the Max Plank Institute for Meteorology. Geophys Res Lett 39:L22707. https://doi.org/10.1029/2012GL053326

    Google Scholar 

  25. Müller WA, Jungclaus JH, Mauritsen T, Baehr J, Bittner M, Budich R, Bunzel F, Esch M, Ghosh R, Haak H, Ilyina T, Kleine T, Kornblueh L, Li H, Modali K, Notz D, Pohlmann H, Roeckner E, Stemmler I, Tian F, Marotzke J (2018) A higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J Adv Model Earth Syst. https://doi.org/10.1029/2017MS001217

    Google Scholar 

  26. Paeth H (2011) Postprocessing of simulated precipitation for impact research in West Africa. Part I: model output statistics for monthly data. Clim Dyn 36:1321–1336. https://doi.org/10.1007/s00382-010-0760-z

    Article  Google Scholar 

  27. Paeth H, Hense A (2003) Seasonal forecast of sub-sahelian rainfall using cross validated model output statistics. Meteorol Z 12:157–193. https://doi.org/10.1127/0941-2948/2003/0012-0157

    Article  Google Scholar 

  28. Paeth H, Paxian A, Sein DV, Jacob D, Panitz H-J, Warscher M, Fink AH, Kunstmann H, Breil M, Engel T, Krause A, toedter J, Ahrens B (2017) Decadal and multi-year predictability of the West African monsoon and the role of dynamical downscaling. Meteorol Z. https://doi.org/10.1127/metz/2017/0811

    Google Scholar 

  29. Paeth H, Li J, Pollinger F, Mueller WA, Pohlmann H, Feldmann H, Panitz H-J (2018) An effective drift correction for dynamical downscaling of decadal global climate predictions. Clim Dyn. https://doi.org/10.1007/s00382-018-4195-2

    Google Scholar 

  30. Panitz H-J, Fosser G, Sasse R, Sedlmeier K, Mieruch S, Breil M, Feldmann H, Schaedler G (2014) High resolution climate modelling with the CCLM regional model. High Perform Comput Simul USC Comput Sci. https://doi.org/10.1007/978-3-319-02165-2

    Google Scholar 

  31. Pasternack A, Bhend J, Liniger MA, Rust HW, Mueller WA, Ulbrich U (2018) Parametric decadal climate forecast recalibration (DeFoReSt 1.0). Geosci Model Dev 11:351–368. https://doi.org/10.5194/gmd-11-351-2018

    Article  Google Scholar 

  32. Pattatanus-Abraham M, Kadow C, Illing S, Mueller W, Pohlmann H, Steinbrecht W (2016) Bias and drift pf the mid-range decadal climate prediction system (MiKlip) validated by European radiosonde data. Meteorol Z 25:709–720. https://doi.org/10.1127/metz/2016/0803

    Article  Google Scholar 

  33. Paxian A et al (2016) Bias reduction in decadal predictions of West African monsoon rainfall using regional climate models. J Geophys Res. https://doi.org/10.1002/2015JD024143

    Google Scholar 

  34. Piani C, Haerter JO (2012) Two dimensional bias correction of temperature and precipitation copulas in climate models. Geophys Res Lett 39:L20401. https://doi.org/10.1029/2012GL053839

    Article  Google Scholar 

  35. Pohlmann H, Mueller WA, Kulkarni K, Kameswarrao M, Matei D, Vamborg FSE, Kadow C, Illing S, Marotzke J (2013) Imporved forcast skill in the tropics in the new MiKlip decadal climate predictions. Geophys Res Lett 40:5798–5802

    Article  Google Scholar 

  36. Pohlmann H, Kroeger J, Greatbatch RJ, Mueller WA (2017) Initialization shock in decadal hindcasts due to errors in wind stress over the tropical Pacific. Clim Dyn 49:2685–2693. https://doi.org/10.1007/s00382-016-3486-8

    Article  Google Scholar 

  37. Reyers M, Pinto JG, Moemken J (2015) Statistical-dynamical downscaling for wind energy potentials: evaluation and applications to decadal hindcasts and climate change projection. Int J Climatol 35:229–244. https://doi.org/10.1002/joc.3975

    Article  Google Scholar 

  38. Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17:347–348

    Article  Google Scholar 

  39. Sansom PG, Ferro CAT, Stephenson DB, Goddard L, Mason SJ (2016) Best practices for postprocessing ensemble climate forecast. Part I: selecting appropriate recalibration methods. J Clim 29:7247–7264

    Article  Google Scholar 

  40. Smith LA, Du H, Suckling EB, Niehoerster F (2015) Probabilistic skill in ensemble seasonal forecasts. Q J R Meteorol Soc 141:1085–1100. https://doi.org/10.1002/qj.2403

    Article  Google Scholar 

  41. Stockdale TN, Anderson DLT, Balmaseda MA, Doblas-Reyes F, Ferranti L, Mogensen K, Palmer TN, Molteni F, Vitart F (2011) ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Clim Dyn 37:455–471. https://doi.org/10.1007/s00382-010-0947-3

    Article  Google Scholar 

  42. Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456–457:12–29

    Article  Google Scholar 

  43. Thoma M, Greatbatch RJ, Kadow C, Gerdes R (2015) Decadal hindcasts initialized using observed surface wind stress: evaluation and prediction out to 2024. Geophys Res Lett 42:6454–6461. https://doi.org/10.1002/2015GL064833

    Article  Google Scholar 

  44. Timmreck C, Pohlmann H, Illing S, Kadow C (2016) The impact of stratospheric volcanic aerosol on decadal-scale climate predictions. Geophys Res Lett 43:834–842. https://doi.org/10.1002/2015GL067431

    Article  Google Scholar 

  45. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Bechtold VdaC, Florino M, Gribson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo R, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 132:2961–3012. https://doi.org/10.1256/qj.04.176

    Article  Google Scholar 

  46. WMO (2011) Climate knowledge for action: a global framework for climate services-Empowering the most vulnerable. WMO Rep 1065:247

    Google Scholar 

Download references

Acknowledgements

This work was conducted in the framework of the German MiKlip project and supported by the German Ministry of Education and Research (BMBF) under Grant no. 01LP1129A-F. We thank the Max-Planck Institute for Meteorology for providing the MPI-ESM decadal predictions. We acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com). Support for the Twentieth Century reanalysis Project dataset is provided by the US Department of Energy, Office of Science Innovative and Noval Computational Impact on Theory and Experiment (DOE INCITE) Program, and Office of Biological and Environmental Research (BER), and by the National Oceanic and Atmospheric Administration Climate Program Office. We thank the European Centre for Medium-Range Weather Forecasts (ECMWF) for providing Ocean Reanalysis, ERA-20C and ERA-Interim datasets. All MiKlip simulations were performed at the German climate computing center (Deutsches Klimarechenzentrum, DKRZ).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jingmin Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2536 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Pollinger, F., Panitz, H. et al. Bias adjustment for decadal predictions of precipitation in Europe from CCLM. Clim Dyn 53, 1323–1340 (2019). https://doi.org/10.1007/s00382-019-04646-y

Download citation

Keywords

  • Bias-adjustment
  • CCLM
  • Hindcasts
  • Decadal prediction
  • Precipitation
  • Model output statistics