Heavy rainfall in Mediterranean cyclones, Part II: Water budget, precipitation efficiency and remote water sources

Abstract

In this study, we use convection-permitting high resolution (3 km) simulations to quantify and analyse the water budget, precipitation efficiency and water sources of 100 intense Mediterranean cyclones. To this end, we calculate the water content, advection and microphysical processes of water vapour and rain water by implementing new diagnostics to the Weather Research and Forecasting (WRF) model. The 100 intense cyclones have been randomly selected from a 500 intense cyclones dataset, identified and tracked in an 11-year time period in part I of this study. Results are presented in a composite approach showing that most rainfall takes place to the north-east side of the cyclones, close to their centre. Rainfall location is concomitant to the area of horizontal moisture flux convergence and is quasi-equal to the amount of water vapour loss due to microphysical processes. Similar results were found regardless if cyclones produce high or low rainfall amounts. Vertical profiles of the water budget terms revealed deeper clouds for the cyclones producing high rainfall, consistent with higher values of vertical advection of both water vapour and rain water. Finally, cyclones were analysed with respect to their precipitation efficiency, i.e. the ratio between the rainwater produced in an atmospheric column and the consequent rainfall, and showed that cyclones tend to be more efficient when their rainfall production takes place over land. Therefore, there is a complex relation between water vapour advection, precipitation efficiency and rainfall which is discussed through the comparison of two tropical-like cyclones with two cyclones that produced low rainfall amounts. Finally, our analysis is complemented by applying a Lagrangian approach to all 100 cyclones in order to quantify the water vapour source regions that contribute to the cyclones’ rainfall due to local surface evaporation. Results showed that these regions are located over both the Atlantic and the Mediterranean, however we show that cyclones producing high rainfall are related with higher water transport from both the subtropical Atlantic and the Mediterranean Sea.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Braun SA (2006) High-resolution simulation of Hurricane Bonnie (1998). Part II: Water Budget. J Atmos Sci 63:43–64. https://doi.org/10.1175/JAS3609.1

    Article  Google Scholar 

  2. Carrió DS, Homar V, Jansa A, Romero R, Picornell MA (2017) Tropicalization process of the 7 November 2014 Mediterranean cyclone: numerical sensitivity study. Atmos Res 197:300–312. https://doi.org/10.1016/j.atmosres.2017.07.018

    Article  Google Scholar 

  3. Chazette P, Flamant C, Raut J, Totems J, Shang X (2016) Tropical moisture enriched storm tracks over the Mediterranean and their link with intense rainfall in the Cevennes–Vivarais area during HyMeX. QJR Meteorol Soc 142:320–334. https://doi.org/10.1002/qj.2674

    Article  Google Scholar 

  4. Davolio S, Miglietta MM, Moscatello A, Pacifico F, Buzzi A, Rotunno R (2009) Numerical forecast and analysis of a tropical-like cyclone in the Ionian Sea. Nat Hazards Earth Syst Sci 9(2):551–562

    Article  Google Scholar 

  5. Dee D, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. QJRMS 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  6. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107. https://doi.org/10.1175/1520-0469(1989)046h3077:NSOCODi2.0.CO;2

    Article  Google Scholar 

  7. Duffourg F, Ducrocq V (2013) Assessment of the water supply to Mediterranean heavy precipitation: a method based on finely designed water budgets. Atmos Sci Lett 14(3):133–138

    Article  Google Scholar 

  8. Fita L, Flaounas E (2018) Medicanes as subtropical cyclones: the December 2005 case from the perspective of surface pressure tendency diagnostics and atmospheric water budget. QJR Meteorol Soc. https://doi.org/10.1002/qj.3273

    Article  Google Scholar 

  9. Flaounas E, Raveh-Rubin S, Wernli H, Drobinski P, Bastin S (2015) The dynamical structure of intense Mediterranean cyclones. Clim Dyn 44(9–10):2411–2427

    Article  Google Scholar 

  10. Flaounas E, Di Luca A, Drobinski P, Mailler S, Arsouze T, Bastin S, Beranger K, Lebeaupin Brossier C (2016) Cyclone contribution to the Mediterranean Sea water budget. Clim Dyn 44:1–15. https://doi.org/10.1007/s00382-015-2622-1

    Article  Google Scholar 

  11. Flaounas E, Kotroni V, Lagouvardos K, Gray SL, Rysman JF, Claud C (2017) Heavy rainfall in Mediterranean cyclones. Part I: contribution of deep convection and warm conveyor belt. Clim Dyn 27:1–5

    Google Scholar 

  12. Fritz C, Wang Z (2014) Water vapor budget in a developing tropical cyclone and its implication for tropical cyclone formation. J Atmos Sci 71:4321–4332. https://doi.org/10.1175/JAS-D-13-0378.1

    Article  Google Scholar 

  13. Gallus WA Jr, Pfeifer M (2008) Intercomparison of simulations using 5 WRF microphysical schemes with dual-polarization data for a German squall line. Adv Geosci 16:109

    Article  Google Scholar 

  14. Gao S, Li X (2011) Can water vapour process data be used to estimate precipitation efficiency? QJR Meteorol Soc 137:969–978. https://doi.org/10.1002/qj.8061

    Article  Google Scholar 

  15. Giannaros T, Kotroni V, Lagouvardos K (2015) Predicting Lightning activity in greece with the weather research and forecasting (WRF) Model. Atmos Res 156:1–13

    Article  Google Scholar 

  16. Hong SY (2010) A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Q J R Meteorol Soc 136(651):1481–1496

    Article  Google Scholar 

  17. Hong SY, Juang HMH, Zhao Q (1998) Implementation of prognostic cloud scheme for a regional spectral model. Mon Weather Rev 126:26212639

    Google Scholar 

  18. Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice-microphysical processes for the bulk parameterization of cloud and precipitation. Mon Weather Rev 132:103–120

    Article  Google Scholar 

  19. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9):2318–2341

    Article  Google Scholar 

  20. Huang H, Yang M, Sui C (2014) water budget and precipitation efficiency of Typhoon Morakot (2009). J Atmos Sci 71:112–129. https://doi.org/10.1175/JAS-D-13-053.1

    Article  Google Scholar 

  21. Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55. https://doi.org/10.1175/JHM560.1

    Article  Google Scholar 

  22. Jansa A, Genoves A, Picornell M, Campins J, Riosalido R, Carretero O (2001) Western Mediterranean cyclones and heavy rain. Part 2: Statistical approach. Meteorol Appl 8(1):43–56. https://doi.org/10.1017/S1350482701001049

    Article  Google Scholar 

  23. Jansa A, Alpert P, Arbogast P, Buzzi A, Ivancan-Picek B, Kotroni V, Llasat MC, Ramis C, Richard E, Romero R, Speranza A (2014) MEDEX: a general overview. Nat Hazards Earth Syst Sci 14:1965–1984

    Article  Google Scholar 

  24. Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43(1):170–181

    Article  Google Scholar 

  25. Katsanos D, Lagouvardos K, Kotroni V, Huffmann GJ (2004) Statistical evaluation of MPA-RT high-resolution precipitation estimates from satellite platforms over the Central and Eastern Mediterranean. Geophys Res Lett 31:L06116

    Article  Google Scholar 

  26. Kotroni V, Lagouvardos K, Defer E, Dietrich S, Porcù F, Medaglia CM, Demirtas M (2005) The Antalya 5 December 2002 storm: observations and model analysis. J Appl Meteorol 45:576–590

    Article  Google Scholar 

  27. Michaelides S, Karacostas T, Sánchez JL, Retalis A, Pytharoulis I, Homar V, Romero R, Zanis P, Giannakopoulos C, Bühl J, Ansmann A, Merino A, Melcón P, Lagouvardos K, Kotroni V, Bruggeman A, López-Moreno JI, Berthet C, Katragkou E, Tymvios F, Hadjimitsis DG, Mamouri RE, Nisantzi A (2018) Reviews and perspectives of high impact atmospheric processes in the Mediterranean. Atmos Res 208:4–44

    Article  Google Scholar 

  28. Miglietta MM, Mastrangelo D, Conte D (2015) Influence of physics parameterization schemes on the simulation of a tropical-like cyclone in the Mediterranean Sea. Atmos Res 153:360–375

    Article  Google Scholar 

  29. Miltenberger A, Seifert KA, Joos H, Wernli H (2015) A scaling relation for warm-phase orographic precipitation: a Lagrangian analysis for 2D mountains. Q J R Meteorol Soc 141:2185–2198

    Article  Google Scholar 

  30. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmosphere: Rrtm, a validated correlated-k model for the long wave. J Geophys Res 102(D14):16-663–16-682

    Article  Google Scholar 

  31. Pfahl S, Wernli H (2012) Spatial coherency of extreme weather events in Germany and Switzerland. Int J Climatol 32:1863–1874

    Article  Google Scholar 

  32. Raveh-Rubin S, Flaounas E (2017) A dynamical link between deep Atlantic extratropical cyclones and intense Mediterranean cyclones. Atmos Sci Lett 18:215–221. https://doi.org/10.1002/asl.745

    Article  Google Scholar 

  33. Raveh-Rubin S, Wernli H (2016) Large-scale wind and precipitation extremes in the Mediterranean: dynamical aspects of five selected cyclone events. Q J R Meteorol Soc 142:3097–3114. https://doi.org/10.1002/qj.2891

    Article  Google Scholar 

  34. Romilly TG, Gebremichael M (2011) Evaluation of satellite rainfall estimates over Ethiopian river basins. Hydrol Earth Syst Sci 15(5):1505

    Article  Google Scholar 

  35. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Duda DMBMG, Huang XY, Wang W, Powers JG (2008) A description of the advanced research wrf version 3. NCAR TECHNICAL NOTE 475: NCAR/TN475 + STR

  36. Sodemann H, Schwierz C, Wernli H (2008) Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J Geophys Res 113:D03107. https://doi.org/10.1029/2007JD008503

    Article  Google Scholar 

  37. Sprenger M, Wernli H (2015) The LAGRANTO Lagrangian analysis tool-version 2.0. Geosci Model Dev 8(8):2569–2586

    Article  Google Scholar 

  38. Sui C, Li X, Yang MJ (2007) On the definition of precipitation efficiency. J Atmos Sci 64(12):4506–4513

    Article  Google Scholar 

  39. Wernli H, Paulat M, Hagen M, Frei C (2008) SAL—a novel quality measure for the verification of quantitative precipitation forecasts. Mon Wea Rev 136:4470–4487

    Article  Google Scholar 

  40. Wicker LJ, Skamarock WC (2002) Time splitting methods for elastic models using forward time schemes. Mon Wea Rev 130:2088–2097

    Article  Google Scholar 

  41. Winschall A, Pfahl S, Sodemann H, Wernli H (2012) Impact of North Atlantic evaporation hot spots on southern Alpine heavy precipitation events. QJR Meteorol Soc 138:1245–1258. https://doi.org/10.1002/qj.987

    Article  Google Scholar 

  42. Winschall A, Sodemann H, Pfahl S, Wernli H (2014) How important is intensified evaporation for Mediterranean precipitation extremes? J Geophys Res Atmos 119:5240–5256

    Article  Google Scholar 

  43. Wu D, Dong X, Xi B, Feng Z, Kennedy A, Mullendore G, Gilmore M, Tao WK (2013) Impacts of microphysical scheme on convective and stratiform characteristics in two high precipitation squall line events. J Geophys Res Atmos. https://doi.org/10.1002/jgrd.50798

    Article  Google Scholar 

  44. Yang M, Braun SA, Chen D (2011) Water budget of Typhoon Nari (2001). Mon Wea Rev 139:3809–3828. https://doi.org/10.1175/MWR-D-10-05090.1

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Heini Wernli and one anonymous Reviewer for their fruitful comments and in depth review. Emmanouil Flaounas received support by the Marie Skłodowska-Curie actions (Grant Agreement-658997) in the framework of the project ExMeCy. This work was supported by computational time granted from the Greek Research and Technology Network (GRNET) in the National HPC facility—ARIS—under project ID pr003009.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emmanouil Flaounas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Flaounas, E., Fita, L., Lagouvardos, K. et al. Heavy rainfall in Mediterranean cyclones, Part II: Water budget, precipitation efficiency and remote water sources. Clim Dyn 53, 2539–2555 (2019). https://doi.org/10.1007/s00382-019-04639-x

Download citation