Skip to main content

Precursors of quasi-decadal dry-spells in the Central America Dry Corridor

Abstract

Although the hydric stress in Central America is generally low, there is a region relatively drier and prone to drought known as the Central America Dry Corridor (CADC). The area of interest is located mainly in the Pacific slope of Central America, from Chiapas in southern Mexico, to the Nicoya Peninsula in the Costa Rican North Pacific. Most of the region has experienced significant warming trends (1970–1999). On the contrary precipitation and the Palmer Drought Severity Index (PDSI) have mainly displayed non-significant trends. Analysis using the Standardized Precipitation Index and PDSI in the CADC, suggests a significant periodicity of severe and sustained droughts of around 10 years. The drought response has been associated with tropical heating that drives an atmospheric response through strengthening of the Hadley cell, which in turn produces higher pressure in the subtropical highs, and intensification of the trade winds (indexed by the Caribbean Low Level Jet). It is important to determine the commonness of severe and sustained droughts in the CADC to improve water resources planning, as this is a region that depends on subsistence agriculture and presents high social and economic vulnerabilities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Aguilar E et al (2005) Changes in precipitation and temperature extremes in central America and northern South America, 1961–2003. J Geophys Res Atmos. https://doi.org/10.1029/2005JD006119

    Google Scholar 

  2. Alfaro E (2002) Some characteristics of the annual precipitation cycle in Central America and their relationships with its surrounding tropical oceans. Tópicos Meteorológicos y Oceanográficos 9:88–103

    Google Scholar 

  3. Alfaro EJ, Soley FJ (2009) Descripción de dos métodos de rellenado de datos ausentes en series de tiempo meteorológicas. Revista de Matemáticas Teoría y Aplicaciones 16:59–74

    Google Scholar 

  4. Alley WM (1984) The Palmer Drought Severity Index: limitations and assumptions. J Clim Appl Meteor 23:1100–1109

    Article  Google Scholar 

  5. Amador JA (1998) A climatic feature of the tropical Americas: the Trade Wind Easterly Jet. Tópicos Meteorológicos y Oceanográficos 5:91–102

    Google Scholar 

  6. Amador JA (2008) The intra-americas sea low-level jet, overview and future research. Trends and directions in climate research. Ann N Y Acad Sci 1146:153–188. https://doi.org/10.1196/annals.1446.012

    Article  Google Scholar 

  7. Amador JA (2011) Socio-economic impacts associated with meteorological systems and tropical cyclones in Central América in 2010. Bull Am Meteorol Soc 92:S184

    Google Scholar 

  8. Amador JA, Magaña VO, Pérez JB (2000) The Low Level Jet and continental activity in the Caribbean. In: Proceedings of the 24th conference on hurricanes and tropical meteorology, FT. Lauderdale, American Meteorological Society, pp 114–115

  9. Amador JA, Chacón JR, Laporte S (2003) Climate and climate variability in the Arenal Basin of Costa Rica. In: Climate, water and trans-boundary challenges in the Americas. Kluwer Academic, Holland, pp 317–349

    Google Scholar 

  10. Amador JA, Alfaro EJ, Lizano OG, Magaña VO (2006) Atmospheric forcing of the eastern tropical Pacific: a review. Prog Oceanogr 69:101–142. https://doi.org/10.1016/j.pocean.2006.03.007

    Article  Google Scholar 

  11. Amador JA, Durán-Quesada AM, Rivera ER, Mora G, Sáenz F, Calderón B, Mora N (2016a) The easternmost tropical Pacific. Part II: seasonal and intraseasonal modes of atmospheric variability. Revista de Biología Tropical 64:S23–S57

    Article  Google Scholar 

  12. Amador JA, Rivera ER, Durán-Quesada AM, Mora G, Sáenz F, Calderón B, Mora N (2016b) The easternmost tropical Pacific. Part I: a climate review. Revista de Biología Tropical 64:S1–S22

    Article  Google Scholar 

  13. Amador JA, Hidalgo HG, Alfaro EJ, Durán-Quesada AM, Calderón B, Mora N, Arce D (2017) Central America [in “State of the Climate in 2016”]. Bull Am Meteorol Soc 98:S180–S183. https://doi.org/10.1175/2017BAMSStateoftheClimate.1

    Google Scholar 

  14. Anchukaitis KJ, Taylor MJ, Leland C, Pons D, Martin-Fernandez J, Castellanos E (2015) Tree-ring reconstructed dry season rainfall in Guatemala. Clim Dyn 45:1537–1546. https://doi.org/10.1007/s00382-014-2407-y

    Article  Google Scholar 

  15. Barber CB, Dobkin DP, Huhdanpaa HT (1996) The Quickhull algorithm for convex hulls. ACM Trans Math Softw 22:469–483

    Article  Google Scholar 

  16. Butterworth S (1930) On the theory of filter amplifiers. Exp Wirel Wirel Eng 7:536–541

    Google Scholar 

  17. Cook KH, Vizy EK (2010) Hydrodynamics of the Caribbean low-level jet and its relationship to precipitation. J Clim 23:1477–1494. https://doi.org/10.1175/2009JCLI3210.1

    Article  Google Scholar 

  18. Delone BN (1934) Sur la sph ́ere vide. Bul Acad Sci URSS Class Sci Nat, pp 793–800

  19. Durán-Quesada AM, Gimeno L, Amador J (2016) Role of moisture transport for Central American precipitation. Earth Syst Dyn Discuss. https://doi.org/10.5194/esd-2016-66

    Google Scholar 

  20. Enfield DB, Alfaro EJ (1999) The dependence of Caribbean rainfall on the interaction of the tropical Atlantic and Pacific oceans. J Clim 12:2093–2103. https://doi.org/10.1175/1520-0442(1999)012%3C2093:TDOCRO%3E2.0.CO;2

    Article  Google Scholar 

  21. Enfield DB, Mestas-Nunez AM, Trimble PJ (2001) The Atlantic Multidecadal Oscillation and its relationship to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080. https://doi.org/10.1029/2000GL012745

    Article  Google Scholar 

  22. FAO (2016) Corredor Seco América Central, informe de situación, junio 2016. Food and Agriculture Organization of the United Nations, Quebec City, p 3

    Google Scholar 

  23. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  24. Hasanean HM (2004) Variability of the North Atlantic Subtropical High and associations with tropical sea surface temperatures. Int J Climatol 24:945–957. https://doi.org/10.1002/joc.1042

    Article  Google Scholar 

  25. Hidalgo HG, Alfaro EJ (2012) Some physical and socio-economical aspects of climate change in Central America. Prog Phys Geogr 36:380–399. https://doi.org/10.1177/0309133312438906

    Article  Google Scholar 

  26. Hidalgo HG, Dracup JA (2002) Southern hemisphere teleconnection patterns and their relation to australian hydroclimatic variation: potential precipitation and streamflow long-range forecasting. In: Proceedings of the 27th hydrology and water resources conference. Melbourne, Australia, p 6

  27. Hidalgo HG, Amador JA, Alfaro EJ, Quesada B (2013) Hydrological climate change projections for Central America. J Hydrol 495:94–112. https://doi.org/10.1016/j.jhydrol.2013.05.004

    Article  Google Scholar 

  28. Hidalgo HG, Durán-Quesada AM, Amador JA, Alfaro EJ (2015) The Caribbean low level jet, the inter-tropical convergence zone and precipitation patterns in the intra Americas sea: a proposed dynamical mechanism. Geogr Ann Series A Phys Geogr 97:41–59. https://doi.org/10.1111/geoa.1208

    Article  Google Scholar 

  29. Hidalgo HG, Alfaro EJ, Quesada-Montano B (2017) Observed (1970–1999) climate variability in Central America using a high-resolution meteorological dataset with implication to climate change studies. Clim Change 141:13–28. https://doi.org/10.1007/s10584-016-1786-y

    Article  Google Scholar 

  30. Hidalgo León HG, Herrero Madriz C, Alfaro Martínez EJ, Muñoz SG, Mora Sandí NP, Mora Alvarado DA, Chacón Salazar VH (2015) Urban Waters in Costa Rica. In: Urban Water Challenges in the Americas. A Perspective from the Academies of Sciences. Interamerican Network of Academies of Sciences, pp 202–225. http://www.ianas.org. Accessed 3 Dec 2017

  31. Hurrel JM (1995) Decadal trends in the North Atlantic Oscillation: regional temperature and precipitation. Science 269:676–679

    Article  Google Scholar 

  32. Imbach P, Molina L, Locatelli B, Roupsard O, Mahe G, Neilson R, Corrales L, Scholze M, Cialis P (2012) Modeling potential equilibrium states of vegetation and terrestrial water cycle of Mesoamerica under climate change scenarios. J Hydrometeorol 13:665–680. https://doi.org/10.1175/JHM-D-11-023.1

    Article  Google Scholar 

  33. IPCC (2007) Historical overview of climate change science. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  34. Jones PD, Harpham C, Harris I, Goodess CM, Burton A, Centella-Artola A, Taylor MA, Bezanilla-Morlot A, Campbell JD, Stephenson TS, Joslyn O, Nicholls K, Baur T (2016) Long-term trends in precipitation and temperature across the Caribbean. Int J Climatol 36:3314–3333. https://doi.org/10.1002/joc.4557

    Article  Google Scholar 

  35. Jury MR (2009) A quasi-decadal cycle in Caribbean climate. J Geophys Res 114:D13102. https://doi.org/10.1029/2009JD011741

    Article  Google Scholar 

  36. Jury MR, Gouirand I (2011) Decadal climate variability of the eastern Caribbean. J Geophys Res 116:D00Q03. https://doi.org/10.1029/2010JD015107

    Article  Google Scholar 

  37. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. https://doi.org/10.1175/1520-0477(1996)077%3C0437:TNYRP%3E2.0.CO;2

    Article  Google Scholar 

  38. Kendall MG (1975) Rank correlation methods, 4th edn. Charles Griffin, London

    Google Scholar 

  39. Magaña V, Amador JA, Medina S (1999) The mid-summer drought over Mexico and Central America. J Clim 12:1577–1588. https://doi.org/10.1175/1520-0442(1999)012%3C1577:TMDOMA%3E2.0.CO;2

    Article  Google Scholar 

  40. Maldonado T, Alfaro E, Fallas B, Alvarado L (2013) Seasonal prediction of extreme precipitation events and frequency of rainy days over Costa Rica, Central America, using canonical correlation analysis. Adv Geosci 33:41–52

    Article  Google Scholar 

  41. Maldonado T, Rutgersson A, Amador J, Alfaro E, Claremar B (2015) Variability of the Caribbean low-level jet during boreal winter: large-scale forcings. Int J Climatol. https://doi.org/10.1002/joc.4472

    Google Scholar 

  42. Maldonado T, Alfaro E, Rutgersson A, Amador JA (2016a) The early rainy season in Central America: the role of the tropical North Atlantic SSTs. Int J Climatol. https://doi.org/10.1002/joc.4958

    Google Scholar 

  43. Maldonado T, Rutgersson A, Alfaro E, Amador J, Claremar B (2016b) Interannual variability of the midsummer drought in Central America and the connection with sea surface temperatures. Adv Geosci 42:35–50. https://doi.org/10.5194/adgeo-42-35-2016

    Article  Google Scholar 

  44. Maldonado T, Alfaro EJ, Hidalgo HG (2018) Revision of the main drivers and variability of Central America Climate and seasonal forecast systems. Revista de Biología Tropical 66:S153–S175

    Article  Google Scholar 

  45. Mann HB (1945) Non-parametric tests against trend. Econometrica 13:163–171

    Article  Google Scholar 

  46. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scale. In: Proceedings of the eighth conference on applied climatology, Anaheim, California, 17–22 January 1993. American Meteorological Society, Boston, pp 179–184

    Google Scholar 

  47. Muñoz E, Busalacchi AJ, Nigam S, Ruiz-Barradas A (2008) Winter and summer structure of the Caribbean low-level jet. J Clim 21:1260–1276. https://doi.org/10.1175/2007JCLI1855.1

    Article  Google Scholar 

  48. Palmer WC (1965) Meteorological drought. Office of Climatology Research Paper 45, Weather Bureau, Washington, DC, p 58

    Google Scholar 

  49. Pennington G, Lewis GP, Ratter JA (2006) Neotropical savannas and seasonally dry forests: plant diversity, biogeography, and conservation. CRC, Boca Raton, pp 1–30

    Book  Google Scholar 

  50. Peralta RO, Carrazón Alocén J, Zelaya Elvir CA (2012) Buenas prácticas para la seguridad alimentaria y la gestión de riesgo. Publicado por: organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO), p 53

  51. Pérez-Briceño PM, Alfaro EJ, Hidalgo HG, Jiménez F (2016) Distribución espacial de impactos de eventos hidrometeorológicos en América Central. Revista de Climatología 16:63–75

    Google Scholar 

  52. Quirós Badilla E, Hidalgo León HG (2016) Variabilidad y conexiones climáticas de la zona de convergencia intertropical del Pacífico este. Tópicos Meteorológicos y Oceanográficos 15:21–36

    Google Scholar 

  53. Richman MB (1986) Rotation of Principal Components. J Climatol 6:293–335

    Article  Google Scholar 

  54. Stephenson TS, Vincent LA, Allen T, Van Meerbeeck CJ, McLean N, Peterson TC, Taylor MA, Aaron-Morrison AP, Auguste T, Bernard D, Boekhoudt JRI, Blenman RC, Braithwaite GC, Brown G, Butler M, Cumberbatch CJM, Etienne-Leblanc S, Lake DE, Martin DE, McDonald JL, Ozoria Zaruela M, Porter AO, Santana Ramirez M, Tamar GA, Roberts BA, Sallons Mitro S, Shaw A, Spence JM, Winter A, Trotman AR (2014) Changes in extreme temperature and precipitation in the Caribbean region, 1961–2010. Int J Climatol 34:2957–2971. https://doi.org/10.1002/joc.3889

    Google Scholar 

  55. Taylor M, Alfaro E (2005) Climate of Central America and the Caribbean. In: Oliver JE (ed) Encyclopedia of world climatology. Springer, Netherlands, pp 183–189

    Chapter  Google Scholar 

  56. Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation, part II: trends. J Clim 13:1018–1036

    Article  Google Scholar 

  57. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  58. Torrence C, Compo G (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  59. van der Zee Arias A, van der Zee J, Meyrat A, Poveda C, Picado L (2012a) Estudio de la caracterización del Corredor Seco Centroamericano. Food and Agriculture Organization of the United Nations (FAO), Quebec City, p 92

    Google Scholar 

  60. van der Zee Arias A, van der Zee J, Meyrat A, Poveda C, Picado L (2012b) Identificación de actores relevantes y relaciones interinstitucionales en el Corredor Seco Centroamericano. Food and Agriculture Organization of the United Nations (FAO), Quebec City, p 122

    Google Scholar 

  61. Wang C (2007) Variability of the Caribbean Low-Level Jet and its relations to climate. Clim Dyn 29:411–422. https://doi.org/10.1007/s00382-007-0243-z

    Article  Google Scholar 

  62. Webb RW, Rosenzweig CE, Levine ER (2000) Global soil texture and derived water-holding capacities (Webb et al.). Data set. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge. http://www.daac.ornl.gov. https://doi.org/10.3334/ORNLDAAC/548. Accessed 3 Dec 2017

  63. Wells N, Goddard S, Hayes MJ (2004) A self-calibrating palmer drought severity index. J Clim 17:2335–2351

    Article  Google Scholar 

  64. Whyte FS, Taylor MA, Stephenson TS, Campbell JD (2008) Features of the Caribbean low level jet. J Climatol 28:119–128. https://doi.org/10.1002/joc.1510

    Article  Google Scholar 

  65. WMO (2012) Standardized Precipitation Index User Guide (Svoboda M, Hayes M, Wood D), WMO-No. 1090, Geneva

  66. Zuluaga MD, Houze RA Jr (2015) Extreme convection of the near-equatorial Americas, Africa, and adjoining oceans as seen by TRMM. Mon Weather Rev 143:298–316. https://doi.org/10.1175/MWR-D-14-00109.1

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by projects 805-B7-286 (supported by UCREA), B7-507 and B6-143 (both supported by Vice-presidency of Research at University of Costa Rica (UCR), CONICIT and MICITT), A9-532 (supported by CSUCA-ASDI), B4-227, B0-065, B4-227, B0-810, B8-766 (VI-Redes), B9-454 (VI-Grupos) and A4-906 (CIGEFI-UCR, PESCTMA), from the Center for Geophysical Research (CIGEFI) of UCR. Thanks to the logistics support provided by the School of Physics of UCR. The authors thank Natalie Mora, Paula M. Pérez-Briceño and Andrés Jiménez who formatted the data and collaborated in the calculation of ancillary material.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hugo G. Hidalgo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 148 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hidalgo, H.G., Alfaro, E.J., Amador, J.A. et al. Precursors of quasi-decadal dry-spells in the Central America Dry Corridor. Clim Dyn 53, 1307–1322 (2019). https://doi.org/10.1007/s00382-019-04638-y

Download citation

Keywords

  • Quasi-decadal
  • Oscillation
  • Drought
  • Hydrology
  • Climate variability