Springtime North Pacific Oscillation and summer sea ice in the Beaufort sea

Abstract

We investigate the linkage between the spring (April–June) North Pacific Oscillation (NPO) and the following summer sea ice in the Beaufort sea. A positive NPO is characterized by an intensified and northeastward extended Aleutian Low, a strong Beaufort High, and enhanced easterly winds in the Beaufort sea. Concomitantly, while the deepening East Asian trough steers more cyclones from Siberia to the sub-polar Pacific and thus fewer cyclones into the western Arctic Ocean; a weak polar vortex and weak baroclinicity in the Beaufort sea does not favor cyclone activity. In addition, the East Asian trough enhances warm air advection from the Pacific to the Northwestern America. The spring NPO accounts for 29% of interannual variability of the following September sea ice cover in the Beaufort sea and can be used as a potential predictor for ice melting in the Beaufort sea. During a positive NPO, the strong easterly winds over the Beaufort sea enhance ice advection and reduce ice thickness; on the synoptic scale, there are more occurrences of the pack ice becoming detached from the coast due to the strong easterly winds. Moreover, increases in shortwave radiation and longwave radiations accelerate the ice melting.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Ambaum MH, Hoskins BJ, Stephenson DB (2001) Arctic oscillation or North Atlantic oscillation? J Clim 14(16):3495–3507

    Article  Google Scholar 

  2. Ärthun M, Eldevik T (2016) On anomalous ocean heat transport toward the Arctic and associated climate predictability. J Clim 29:689–704. https://doi.org/10.1175/JCLI-D-15-0448.1

    Article  Google Scholar 

  3. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126

    Article  Google Scholar 

  4. Cavalieri DJ, Parkinson CL, Gloersen P, Zwally H (1996) Updated yearly. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/8GQ8LZQVL0VL

  5. Danielson SL, Weingartner TW, Hedstrom K, Aagaard K, Woodgate R, Curchitser E, Stabeno P (2014) Coupled wind-forced controls of the Bering–Chukchi shelf circulation and the Bering Strait through- flow: Ekman transport, continental shelf waves, and variations of the Pacific–Arctic sea surface height gradient. Prog Oceanogr. https://doi.org/10.1016/j.pocean.2014.04.006

    Google Scholar 

  6. Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  7. Derksen C, Brown R (2012) Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections. Geophys Res Lett 39:L19504

    Article  Google Scholar 

  8. Dickson RR, Osborn TJ, Hurrell JW, Meincke J, Blindheim J, Adlandsvik B Maslowski W (2000) The Arctic Ocean response to the North Atlantic Oscillation. J Clim 13(15):2671–2696

    Article  Google Scholar 

  9. Eastman R, Warren SG (2010) Interannual variations of Arctic cloud types in relation to sea ice. J Clim 23:4216–4232. https://doi.org/10.1175/2010JCLI3492.1

    Article  Google Scholar 

  10. Eicken H (2013) Ocean science: Arctic sea ice needs better forecasts. Nature 497(7450):431–433

    Article  Google Scholar 

  11. Fowler C (2003) Polar Pathfinder daily 25 km EASE-grid sea ice motion vectors. Natl. Snow and Ice Data Cent., Boulder. http://nsidc.org/data/nsidc-0116.html

  12. Francis JA, Hunter E (2006) New insight into the disappearing Arctic sea ice. Eos Trans Am Geophys Union 87:509–511

    Article  Google Scholar 

  13. Frankignoul C, Sennéchael N, Kwon Y-O, Alexander MA (2011) Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J Clim 24:762–777. https://doi.org/10.1175/2010JCLI3731.1

    Article  Google Scholar 

  14. Frey KE, Moore GWK, Cooper LW, Grebmeier JM (2015) Divergent patterns of recent sea ice cover across the Bering, Chukchi, and Beaufort seas of the Pacific Arctic Region. Prog Oceanogr 136:32–49

    Article  Google Scholar 

  15. Guemas V, Blanchard-Wrigglesworth E, Chevallier M, Day JJ, Déqué M, Doblas-Reyes FJ, Fučkar NS, Germe A, Hawkins E, Keeley S, Koenigk T (2014) A review on Arctic sea-ice predictability and prediction on seasonal to decadal time-scales. Q J R Meteorol Soc 142(695):546–561

    Article  Google Scholar 

  16. Horel JD, Wallace JM (1981) Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon Weather Rev 109:813–829

    Article  Google Scholar 

  17. Hoskins BJ, Valdes PJ (1990) On the existence of storm-tracks. J Atmos Sci 47:1854–1964

    Article  Google Scholar 

  18. Hurwitz MM, Newman PA, Garfinkel CI (2012) On the influence of North Pacific sea surface temperature on the Arctic winter climate. J Geophys Res 117:D19110. https://doi.org/10.1029/2012JD017819

    Article  Google Scholar 

  19. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471

    Article  Google Scholar 

  20. Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83(11):1631–1643

    Article  Google Scholar 

  21. Kay JE, L’Ecuyer T, Gettelman A, Stephens G, O’Dell C (2008) The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys Res Lett 35:L08503. https://doi.org/10.1029/2008GL033451

    Article  Google Scholar 

  22. Lee S, Gong T, Feldstein SB, Screen JA, Simmonds I (2017) Revisiting the cause of the 1989–2009 Arctic surface warming using the surface energy budget: downward infrared radiation dominates the surface fluxes. Geophys Res Lett 44:10654–10661. https://doi.org/10.1002/2017GL075375

    Article  Google Scholar 

  23. Lindzen RS, Farrell B (1980) A simple approximate result for the maximum growth rate of baroclinic instabilities. J Atmos Sci 37:1648–1654

    Article  Google Scholar 

  24. Linkin ME, Nigam S (2008) The North Pacific Oscillation-west Pacific teleconnection pattern: mature-phase structure and winter impacts. J Clim 21(9):1979–1997

    Article  Google Scholar 

  25. Luo D, Xiao Y, Diao Y, Dai A, Franzke CLE, Simmonds I (2016) Impact of ural blocking on winter warm arctic-cold eurasian anomalies. Part II: the link to the North Atlantic Oscillation. J Clim 29:3949–3971. https://doi.org/10.1175/JCLI-D-15-0612.1

    Article  Google Scholar 

  26. Luo B, Luo D, Wu L, Zhong L, Simmonds I (2017) Atmospheric circulation patterns which promote winter Arctic sea ice decline. Environ Res Lett 12:054017. https://doi.org/10.1088/1748-9326/aa69d0

    Article  Google Scholar 

  27. Merlis TM, Schneider T (2009) Scales of linear baroclinic instability and macroturbulence in dry atmospheres. J Atmos Sci 66:1821–1833

    Article  Google Scholar 

  28. Mills ME, Walsh JE (2014) Synoptic activity associated with sea ice variability in the Arctic. J Geophys Res Atmos 119:12,117–12,131. https://doi.org/10.1002/2014JD021604

    Article  Google Scholar 

  29. Murray RJ, Simmonds I (1991) A numerical scheme for tracking cyclone centres from digital data. Part I: development and operation of the scheme. Aust Meteorol Mag 39:155–166

    Google Scholar 

  30. Murray RJ, Simmonds I (1995) Responses of climate and cyclones to reductions in Arctic winter sea ice. J Geophys Res 100(C3):4791–4806. https://doi.org/10.1029/94JC02206

    Article  Google Scholar 

  31. Paciorek CJ, Risbey JS, Ventura V, Rosen RD (2002) Multiple indices of Northern Hemisphere cyclone activity, winters 1949–99. J Clim 15:1573–1590

    Article  Google Scholar 

  32. Parkinson CL, Comiso JC (2013) On the 2012 record low Arctic sea ice cover: combined impact of preconditioning and an August storm. Geophys Res Lett 40(7):1356–1361

    Article  Google Scholar 

  33. Perovich DK, Light B, Eicken H, Jones KF, Runciman K, Nghiem SV, (2007), Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: attribution and role in the ice-albedo feedback. Geophys Res Lett 34:L19505. https://doi.org/10.1029/2007GL031480

    Article  Google Scholar 

  34. Polyakov IV, Pnyushkov AV, Alkire MB, Ashik IM, Baumann TM, Carmack EC, Goszczko I, Guthrie J, Ivanov VV, Kanzow T, Krishfield R (2017) Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356(6335):285–291

    Article  Google Scholar 

  35. Proshutinsky AY, Johnson MA (1997) Two circulation regimes of the wind-driven Arctic Ocean. J Geophys Res 102(C6):12493–12514. https://doi.org/10.1029/97JC00738

    Article  Google Scholar 

  36. Proshutinsky A, Dukhovskoy D, Timmermans ML, Krishfield R, Bamber JL (2015) Arctic circulation regimes. Philos Trans R Soc A 373(2052):20140160

    Article  Google Scholar 

  37. Raible CC, Della-Marta PM, Schwierz C, Wernli H, Blender R (2008) Northern Hemisphere extratropical cyclones: a comparison of detection and tracking methods and different reanalyses. Mon Weather Rev 136:880–897. https://doi.org/10.1175/2007MWR2143.1

    Article  Google Scholar 

  38. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. https://doi.org/10.1029/2002JD002670

    Article  Google Scholar 

  39. Rigor IG, Wallace JM, Colony RL (2002) Response of sea ice to the Arctic Oscillation. J Clim 15:2648–2663

    Article  Google Scholar 

  40. Rogers JC (1981) The North Pacific Oscillation. J Clim 1:39–57

    Article  Google Scholar 

  41. Schweiger A, Lindsay R, Zhang J, Steele M, Stern H, Kwok R (2011) Uncertainty in modeled Arctic sea ice volume. J Geophys Res 116(D06):C00. https://doi.org/10.1029/2011JC007084

    Google Scholar 

  42. Screen JA, Simmonds I, Keay. K (2011) Dramatic interannual changes of perennial Arctic sea ice linked to abnormal summer storm activity. J Geophys Res 116:D15105. https://doi.org/10.1029/2011JD015847

    Article  Google Scholar 

  43. Serreze MC, Barry RG (2005) The Arctic climate system. Cambridge University Press, Cambridge

    Google Scholar 

  44. Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea ice cover. Science 315:1533–1536. https://doi.org/10.1126/science.1139426

    Article  Google Scholar 

  45. Serreze MC, Crawford AD, Stroeve JC, Barrett AP, Woodgate RA (2016) Variability, trends, and predictability of seasonal sea ice retreat and advance in the Chukchi sea. J Geophys Res Oceans 121(10):7308–7325

    Article  Google Scholar 

  46. Shimada K, Kamoshida T, Itoh M, Nishio S, Carmack E, McLaughlin F, Zimmerman S, Proshutinsky A (2006) Pacific Ocean inflow: influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophys Res Lett 33:L08605. https://doi.org/10.1029/2005GL025624

    Google Scholar 

  47. Simmonds I (2015) Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35-year period 1979–2013. Ann Glaciol 56(69):18–28

    Article  Google Scholar 

  48. Simmonds I, Murray RJ (1999) Southern extratropical cyclone behavior in ECMWF analyses during the FROST special observing periods. ‎Weather Forecast 14(6):878–891

    Article  Google Scholar 

  49. Simmonds I, Keay K (2000) Mean Southern Hemisphere extratropical cyclone behavior in the 40-year NCEP-NCAR reanalysis. J Clim 13:873–885

    Article  Google Scholar 

  50. Simmonds I, Rudeva I (2012) The great Arctic cyclone of August 2012. Geophys Res Lett 39(23):L23709. https://doi.org/10.1029/2012GL054259

    Article  Google Scholar 

  51. Simmonds I, Burke C, Keay K (2008) Arctic climate change as manifest in cyclone behavior. J Clim 21(22):5777–5796

    Article  Google Scholar 

  52. Steele M, Dickinson S, Zhang J, Lindsay R (2015) Seasonal ice loss in the Beaufort sea: toward synchrony and prediction. J Geophys Res Oceans 120:1118–1132. https://doi.org/10.1002/2014JC010247

    Article  Google Scholar 

  53. Stroeve J, Serreze M, Drobot S, Gearheard S, Holland M, Maslanik J, Meier W, Scambos T (2008) Arctic sea ice extent plummets in 2007. Eos Trans Am Geophys Union 89(2):13–14

    Article  Google Scholar 

  54. Tanaka S, Nishii K, Nakamura H (2016) Vertical structure and energetics of the western pacific teleconnection pattern. J Clim 29(18):6597–6616

    Article  Google Scholar 

  55. Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau NC, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res Oceans 103(C7):14291–14324

    Article  Google Scholar 

  56. Uotila P, Pezza AB, Cassano JJ, Keay K, Lynch AH (2009) A comparison of low pressure system statistics derived from a high-resolution NWP output and three reanalysis products over the Southern Ocean. J Geophys Res 114:D17105. https://doi.org/10.1029/2008JD011583

    Article  Google Scholar 

  57. Wallace JM (2000) North Atlantic oscillation/annular mode: two paradigms—one phenomenon. Q J R Meteorol Soc 126:791–805

    Article  Google Scholar 

  58. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109:784–812

    Article  Google Scholar 

  59. Wang J, Zhang J, Watanabe E, Ikeda M, Mizobata K, Walsh JE, Bai X, Wu B (2009) Is the dipole anomaly a major driver to record lows in Arctic summer sea ice extent? Geophys Res Lett 36:L05706. https://doi.org/10.1029/2008GL036706

    Google Scholar 

  60. Woodgate RA, Weingartner T, Lindsay R (2010) The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat. Geophys Res Lett 37(1):L01602. https://doi.org/10.1029/2009GL041621

    Article  Google Scholar 

  61. Wu B, Wang J, Walsh JE (2006) Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. J Clim 19:210–225

    Article  Google Scholar 

  62. Yang D, Peterson A (2017) River water temperature in relation to local air temperature in the Mackenzie and Yukon Basins. Arctic 70(1):47

    Article  Google Scholar 

  63. Yang D, Marsh P, Ge S (2014) Heat flux calculations for Mackenzie and Yukon Rivers. Polar Sci 8(3):232–241

    Article  Google Scholar 

  64. Zhang J, Rothrock DA (2003) Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon Weather Rev 131:845–861

    Article  Google Scholar 

  65. Zhang J, Lindsay R, Steele M et al (2008) What drove the dramatic retreat of arctic sea ice during summer 2007. Geophys Res Lett 35(11):L11505. https://doi.org/10.1029/2008GL034005

    Article  Google Scholar 

  66. Zhang JL, Lindsay R, Schweiger A, Rigor I (2012) Recent changes in the dynamic properties of declining Arctic sea ice: a model study. Geophys Res Lett 39:L20503. https://doi.org/10.1029/2012GL053545

    Google Scholar 

  67. Zhang J, Lindsay R, Schweiger A et al (2013) The impact of an intense summer cyclone on 2012 Arctic sea ice retreat. Geophys Res Lett 40(4):720–726

    Article  Google Scholar 

  68. Zhang M, Perrie P, Long Z (2017) Dynamical downscaling of the Arctic climate with a focus on polar cyclone climatology. Atmos Ocean https://doi.org/10.1080/07055900.2017.1369390

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Canadian Panel on Energy R & D (PERD) and by the Office of Naval Research, Code 322, “Arctic and Global Prediction”, directed by Drs. Martin Jeffries and Scott Harper for the Grant to Perrie, N00014-15-1-2611 in the initiative on Sea State and Boundary Layer Physics of the Emerging Arctic Ocean, and the Canadian Aquatic Climate Change Adaptation Services Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to William Perrie.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Perrie, W. & Long, Z. Springtime North Pacific Oscillation and summer sea ice in the Beaufort sea. Clim Dyn 53, 671–686 (2019). https://doi.org/10.1007/s00382-019-04627-1

Download citation

Keywords

  • North Pacific Oscillation (NPO)
  • Cyclone activity
  • Summer sea ice in the Beaufort sea