NAO implicated as a predictor of the surface air temperature multidecadal variability over East Asia

Abstract

Surface air temperature is an important factor for human quality of life and is a key marker of global climate change. Understanding multidecadal changes in surface air temperature, and accurately predicting future trends, are therefore important for economic development. In this work, we explore multidecadal variability in East Asian surface air temperature (EASAT). We find that EASAT shows a strong multidecadal variability between 1900 and 2017. Observational analysis shows that annual EASAT multidecadal variability is highly associated with the North Atlantic oscillation (NAO) and the NAO leads detrended annual EASAT by 15–20 years. Further analysis illustrates that the NAO precedes annual EASAT multidecadal variability through its leading effect on the Atlantic Multidecadal oscillation (AMO). The AMO influences annual EASAT multidecadal variability through the Africa–Asia multidecadal teleconnection (AAMT) pattern. An NAO-based linear model is therefore established to predict annual EASAT. The model is able to better hindcast annual EASAT based on different periods of the time-series. Due to the joint influences of NAO multidecadal variability and the forcing associated with anthropogenic greenhouse gas emissions, annual EASAT for 2018–2034 is predicted to remain at its current level or even slightly lower, followed by a period of fast warming over the following decades.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Allan RJ, Ansell TJ (2006) A new globally complete monthly historical mean sea level pressure data set (hadslp2): 1850–2004. J Clim 19(22):5816

    Article  Google Scholar 

  2. Bradley RS, Diaz HF, Kiladis GN, Eischeid JK (1987) ENSO signal in continental temperature and precipitation records. Nature 327(6122):497–501

    Article  Google Scholar 

  3. Bueh C, Shi N, Xie Z (2011) Large-scale circulation anomalies associated with persistent low temperature over southern China in January 2008. Atmos Sci Lett 12:273–280

    Article  Google Scholar 

  4. Cess RD, Goldenberg SD (1981) The effect of ocean heat capacity upon global warming due to increasing atmospheric carbon dioxide. J Geophys Res Oceans 86(C1):498–502

    Article  Google Scholar 

  5. Chen W, Yang S, Huang R (2005) Relationship between stationary planetary wave activity and the East Asian winter monsoon. J Geophys Res Atmos 110:D14

    Google Scholar 

  6. Compo et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28

    Article  Google Scholar 

  7. Ding YH, Ren GY, Shi GY, Gong P, Zheng XH, Zhai PM, Zhang RH, Zhao ZC, Wang SW, Wang HJ, Luo Y, Chen DL, Gao XJ, Dai XS (2007) China’s national assessment report on climate change (I): climate change in China and the future trend. Adv Clim Change Res 3:1–5

    Google Scholar 

  8. Gao LH, Yan ZW, Quan XW (2015) Observed and SST-forced multidecadal variability in global land surface air temperature. Clim Dyn 44(1–2):359–369

    Article  Google Scholar 

  9. Gong DY, Wang SW, Zhu JH (2001) East Asian winter monsoon and arctic oscillation. Geophys Res Lett 28(10):2073–2076

    Article  Google Scholar 

  10. Guan Z, Yamagata T (2003) The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys Res Lett 30(10):235–250

    Article  Google Scholar 

  11. Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci India 103(39):14288–14293

    Google Scholar 

  12. Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004

    Article  Google Scholar 

  13. Hilmer M, Jung T (2000) Evidence for a recent change in the link between the North Atlantic oscillation and Arctic sea ice export. Geophys Res Lett 27(7):989–992

    Article  Google Scholar 

  14. Hoskins BJ (1993) Rossby wave propagation on a realistic longitudinally varying flow. J Atmos Sci 50(12):1661–1671

    Article  Google Scholar 

  15. Hu ZZ. Wu Z (2004) The intensification and shift of the annual North Atlantic oscillation in a global warming scenario simulation. Tellus 56(2):112–124

    Article  Google Scholar 

  16. Hu ZZ, Jha B, Wang W, Huang B, Huang B (2012) An analysis of warm pool and cold tongue El Niños: air–sea coupling processes, global influences, and recent trends. Clim Dyn 38:2017–2035

    Article  Google Scholar 

  17. Hua LJ, Ma ZG, Guo WD (2008) The impact of urbanization on air temperature across China. Theor Appl Climatol 93(3–4):179–194

    Article  Google Scholar 

  18. Hunt BG, Wells NC (1979) An assessment of the possible future climatic impact of carbon dioxide increases based on a coupled one-dimensional atmospheric–oceanic model. J Geophys Res 84:787–790

    Article  Google Scholar 

  19. Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269(5224):676

    Article  Google Scholar 

  20. Hurrell JW (1996) Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys Res Lett 23(6):665–668

    Article  Google Scholar 

  21. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climatic significance and environmental impact. Geophysical monograph series, vol 134. American Geophysical Union, Washington, DC, pp 1–35

    Google Scholar 

  22. Kucharski F, Parvin A, Rodriguezfonseca B, Farneti R, Martinrey M, Polo I et al (2016) The teleconnection of the tropical Atlantic to Indo-Pacific sea surface temperatures on inter-annual to centennial time scales: a review of recent findings. Atmosphere 7(2):29

    Article  Google Scholar 

  23. Levitus S, Antonov JI, Wang J, Delworth TL, Dixon KW, Broccoli AJ (2001) Anthropogenic warming of Earth’s climate system. Science 292:267–270

    Article  Google Scholar 

  24. Li YJ, Li JP (2012) Propagation of planetary waves in the horizonal non-uniform basic flow. Chin J Geophys 55:361–371 (in Chinese)

    Google Scholar 

  25. Li JP, Ruan CQ (2018) The North Atlantic–Eurasian teleconnection in summer and its effects on Eurasian climates. Environ Res Lett 13:024007

    Article  Google Scholar 

  26. Li JP, Wang JXL (2003) A new North Atlantic oscillation index and its variability. Adv Atmos Sci 20(5):661–676

    Article  Google Scholar 

  27. Li JP, Sun C, Jin FF (2013) NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys Res Lett 40(20):5497–5502

    Article  Google Scholar 

  28. Li YJ, Li JP, Jin FF, Zhao S (2015) Interhemispheric propagation of stationary Rossby waves in the horizontally nonuniform background flow. J Atmos Sci 72:3233–3256. https://doi.org/10.1175/JAS-D-14-0239.1

    Article  Google Scholar 

  29. Li C, Zhao T, Ying K (2016) Effects of anthropogenic aerosols on temperature changes in China during the twentieth century based on CMIP5 models. Theor Appl Climatol 125(3–4):529–540

    Article  Google Scholar 

  30. Li JP, Sun C, Ding RQ (2018a) A coupled decadal-scale air–sea interaction theory: the NAO-AMO-AMOC coupled mode and its impacts. In: Beer T, Li JP (eds) Global change and future earth—the geoscience perspective. Cambridge University Press, Alverson, pp 131–143

    Google Scholar 

  31. Li JP, Hsu HH, Wang WC et al (2018b) East Asian climate under global warming: understanding and projection. Clim Dyn. https://doi.org/10.1007/s00382-018-4523-6

    Article  Google Scholar 

  32. Lin Y, Franzke CLE (2015) Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming. Sci Rep 5:12971

    Article  Google Scholar 

  33. Liu Q, Wen N, Liu Z (2006) An observational study of the impact of the North Pacific SST on the atmosphere. Geophys Res Lett 33(18):273–274

    Article  Google Scholar 

  34. Luo FF, Li SL (2014) Joint statistical–dynamical approach to decadal prediction of East Asian surface air temperature. Sci China Earth Sci 57:3062–3072

    Article  Google Scholar 

  35. Luterbacher J, Schmutz C, Gyalistras D, Xoplaki E, Wanner H (1999) Reconstruction of monthly NAO and EU indices back to AD 1675. Geophys Res Lett 26(17):2745–2748

    Article  Google Scholar 

  36. Meehl GA, Teng H (2014) CMIP5 multi-model hindcasts for the mid-1970 s shift and early 2000s hiatus and predictions for 2016–2035. Geophys Res Lett 41(5):1711–1716

    Article  Google Scholar 

  37. Meehl GA, Teng H, Arblaster JM (2014) Climate model simulations of the observed early-2000 s hiatus of global warming. Nat Clim Change 4(10):898–902

    Article  Google Scholar 

  38. Morice CP, Kennedy JJ, Rayner NA, Jones PD (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 dataset. J Geophys Res 117:D08101

    Article  Google Scholar 

  39. Peng S (2002) Mechanism for the NAO response to the North Atlantic SST tripole. J Clim 16(12):1987–2004

    Article  Google Scholar 

  40. Polyakov IV, Johnson MA (2000) Arctic decadal and interdecadal variability. Geophys Res Lett 27(24):4097–4100

    Article  Google Scholar 

  41. Pyper BJ, Peterman RM (1998) Comparison of methods to account for autocorrelation in correlation analyses of fish data. Can J Fish Aquat Sci 55:2127–2140

    Article  Google Scholar 

  42. Robeson SM, Willmott CJ, Jones PD (2014) Trends in hemispheric warm and cold anomalies. Geophys Res Lett 41:9065–9071

    Article  Google Scholar 

  43. Scaife AA, Knight JR, Vallis GK, Folland CK (2005) A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys Res Lett 32(18):109–127

    Article  Google Scholar 

  44. Schlesinger ME (1994) An oscillation in the global climate system of period 65–70 years. Nature 367(6465):723–726

    Article  Google Scholar 

  45. Si D, Hu ZZ, Kumar A, Jha B, Peng P, Wang W, Han R (2016) Is the interdecadal variation of the summer rainfall over eastern China associated with SST? Clim Dyn 46(1–2):135–146

    Article  Google Scholar 

  46. Slonosky V, Yiou P (2002) Does the NAO index represent zonal flow? the influence of the NAO on North Atlantic surface temperature. Clim Dyn 19(1):17–30

    Article  Google Scholar 

  47. Stocker T, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2014) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  48. Stolpe MB, Medhaug I, Knutti R (2017) Contribution of Atlantic and Pacific multidecadal variability to twentieth-century temperature changes. J Clim 30(16):6279–6295

    Article  Google Scholar 

  49. Stolpe MB, Medhaug I, Sedláček J, Knutti R (2018) Multidecadal variability in global surface temperatures related to the Atlantic Meridional Overturning Circulation. J Clim 31(7):2889–2906

    Article  Google Scholar 

  50. Sun YB, Clemens SC, Morrill C (2012) Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nat Geosci 5:46–49

    Article  Google Scholar 

  51. Sun C, Li JP, Jin FF (2015) A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO. Clim Dyn 45:1–17

    Article  Google Scholar 

  52. Sun C, Li JP, Ding RQ, Jin Z (2017) Cold season Africa–Asia multidecadal teleconnection pattern and its relation to the Atlantic multidecadal variability. Clim Dyn 48:11–12

    Google Scholar 

  53. Sun C, Li JP, Kucharski F, Xue JQ, Li X (2018) Contrasting spatial structures of Atlantic multidecadal oscillation between observations and slab ocean model simulations. Clim Dyn 51. https://doi.org/10.1007/s00382-018-4201-8

    Article  Google Scholar 

  54. Taylor KE, Stouffer RJ, Meehl GA (2012) An Overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  55. Thompson SL, Schneider SH (1979) A seasonal zonal energy balance climate model with an interactive lower layer. J Geophys Res 84:2401–2414

    Article  Google Scholar 

  56. Trenberth KE, Paolino DA J (1980) The Northern Hemisphere sea-level pressure data set: trends, errors and discontinuities. Mon Wea Rev 108(7):855–872

    Article  Google Scholar 

  57. University of East Anglia Climatic Research Unit; Harris IC, Jones PD CRU TS4.01 (2017) Climatic research unit (CRU) time-series (TS) version 4.01 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2016). Centre for Environmental Data Analysis

  58. Walker GT (1924) Correlations in seasonal variations of weather IX. Mem Indian Meteor Dept 24:275–332

    Google Scholar 

  59. Wallace JM, Gutzler D (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Wea Rev 109(4):784–812

    Article  Google Scholar 

  60. Wang L, Chen W (2014) A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. Int J Climatol 34(6):2059–2078

    Article  Google Scholar 

  61. Wang XF, Li JP, Sun C, Liu T (2017) NAO and its relationship with the Northern Hemisphere mean surface temperature in CMIP5 simulations. J Geophys Res Atmos 122(8):4202–4227

    Article  Google Scholar 

  62. Wanner H, Bronnimann S, Casty C, Gyalistras D, Luterbacher J, Schmutz C, Stephenson DB, Xoplaki E (2001) North Atlantic oscillation-concepts and studies. Sur Geophys 22(4):321–382

    Article  Google Scholar 

  63. WCRP (World Climate Research Program) (2018) CLIVAR Initial implementation plan. WCRP

  64. Wu B, Wang J (2002) Winter arctic oscillation, siberian high and East Asian winter monsoon. Geophys Res Lett 29(19):1–3

    Article  Google Scholar 

  65. Yang T, Tao Y, Li J, Zhu Q, Su L, He X, Zhang X (2017) Multi-criterion model ensemble of CMIP5 surface air temperature over China. Theor Appl Climatol 6:1–16

    Google Scholar 

  66. Yoshino MM (1978) Climate change and food production. University of Tokyo, Tokyo, p 331

    Google Scholar 

  67. Yu B, Lin H, Wu ZW, Merryfield WJ (2016) Relationship between North American winter temperature and large-scale atmospheric circulation anomalies and its decadal variation. Environ Res Lett 11:074001

    Article  Google Scholar 

  68. Yun KS, Timmermann A (2018) Decadal monsoon-ENSO relationships re-examined. Geophys Res Lett 45(4):2014–2021

    Article  Google Scholar 

  69. Zhang JC, Liu ZG (1992) Climate of China. P376

  70. Zhao P, Jones P, Cao L, Yan Z, Zha S, Zhu Y, Yu Y, Tang G (2014) Trend of surface air temperature in Eastern China and associated large-scale climate variability over the last 100 years. J Clim 27(12):4693–4703

    Article  Google Scholar 

  71. Zhao S, Li JP, Li YJ (2015) Dynamics of an interhemispheric teleconnection across the critical latitude through a southerly duct during boreal winter. J Clim 28:7437–7456. https://doi.org/10.1175/JCLI-D-14-00425.1

    Article  Google Scholar 

  72. Zhao S, Li JP, Li YJ, Jin FF, Zheng JY (2018) Interhemispheric influence of Indo-Pacific convection oscillation on Southern Hemisphere rainfall through southward propagation of Rossby waves. Clim Dyn. https://doi.org/10.1007/s00382-018-4324-y

    Article  Google Scholar 

  73. Zhou L, Dickinson RE, Tian Y, Fang J, Li Q, Kaufmann RK (2004) Evidence for a significant urbanization effect on climate in China. Proc Natl Acad Sci USA 101:9540–9544

    Article  Google Scholar 

  74. Zuo J, Ren HL, Li W (2015) Contrasting impacts of the Arctic oscillation on surface air temperature anomalies in southern China between early and middle-to-late winter. J Clim 28(10):4015–4026

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Key R&D Program of China (2016YFA0601801) and National Natural Science Foundation of China (NSFC) Project (41790474). The authors wish to thank all data providers and two reviewers for their constructive suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianping Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, T., Li, J., Sun, C. et al. NAO implicated as a predictor of the surface air temperature multidecadal variability over East Asia. Clim Dyn 53, 895–905 (2019). https://doi.org/10.1007/s00382-019-04624-4

Download citation

Keywords

  • East Asian surface air temperature
  • North Atlantic oscillation
  • Atlantic multidecadal oscillation
  • Africa–Asia multidecadal teleconnection pattern