Skip to main content
Log in

How do westerly jet streams regulate the winter snow depth over the Tibetan Plateau?

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The linkages between upper-level westerly jet streams and snow depth over the Tibetan Plateau (TP) in winter (from November to the following April) were investigated for the period 1979–2014 using satellite-borne passive microwave retrievals of snow depth data and ERA-Interim reanalysis data. Anomalies in atmospheric circulation, temperature, and precipitation corresponding to variation in westerly jets were examined to find the causes of variation in snow depth over the TP, using singular value decomposition, composite analysis and dynamical diagnosis. Results show that variation in intensity and meridional shifts of westerly jets, with particular attention to the North Tibetan Plateau jet (NTPJ) and the South Tibetan Plateau jet (STPJ), significantly influence the interannual variation of snow depth over the TP in late winter (February–April). For the conjunction of intense STPJ and weak NTPJ, an anomalous cold low-pressure vortex is observed over the TP. The vortex extends across the TP and spans from the ground surface to the upper troposphere. There is anomalous ascending motion above the TP due to secondary circulations immediately south and north of STPJ, with increased moisture flux from the southwest. These circulation structures cause significant cooling and increased precipitation, thus promoting snowfall and snow accumulation. Temperature is a more important influence than precipitation on snow accumulation. Cooling over the TP is caused by cold temperature advection due to intensely cold air and weakened descending adiabatic heating due to anomalous ascending motion. Local moisture is reduced, and anomalous ascending moisture advection leads to more net precipitation and snowfall over the TP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

TP:

Tibetan Plateau

SMMR:

Scanning multichannel microwave radiometer

SSM/I:

Special sensor microwave/imager

MODIS:

Meteorological observation and moderate resolution imaging spectroadiometer

NAO:

North Atlantic oscillation

AO:

Arctic oscillation

AOI:

Arctic Oscillation Index

IOD:

Indian Ocean Dipole

ENSO:

El Niño–southern oscillation

SST:

Sea surface temperature

SVD:

Singular value decomposition

SDI:

Snow depth index

JOF:

Jet occurrence frequency

HWS:

Horizontal wind speed

STPJ:

South Tibetan Plateau jet

NTPJ:

North Tibetan Plateau jet

References

  • Bamzai AS, Shukla J (1999) Relation between Eurasian snow cover, snow depth, and the Indian summer monsoon: an observational study. J Clim 12(10):3117–3132

    Article  Google Scholar 

  • Barlow M, Wheeler M, Lyon B et al (2005) Modulation of daily precipitation over southwest Asia by the Madden–Julian oscillation. Mon Weather Rev 133(12):3579–3594

    Article  Google Scholar 

  • Blackmon ML, Wallace JM, Lau N-C et al (1977) An observational study of the Northern Hemisphere wintertime circulation. J Atmos Sci 34(7):1040–1053

    Article  Google Scholar 

  • Blanford HF (1884) On the connexion of the Himalaya snowfall with dry winds and seasons of drought in India. Proc R Soc Lond 37(232–234):3–22

    Google Scholar 

  • Bo Y, Li X, Wang C (2014) Seasonal characteristics of the interannual variations centre of the Tibetan Plateau snow cover. J Glaciol Geocryol 36(6):1353–1362 (in Chinese)

    Google Scholar 

  • Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5(6):541–560

    Article  Google Scholar 

  • Cannon F, Carvalho LM, Jones C et al (2015) Multi-annual variations in winter westerly disturbance activity affecting the Himalaya. Clim Dyn 44(1–2):441–455

    Article  Google Scholar 

  • Che T, Li X, Jin R et al (2008) Snow depth derived from passive microwave remote-sensing data in China. Ann Glaciol 49:145–154

    Article  Google Scholar 

  • Chen Z, Wu R, Chen W (2014) Distinguishing interannual variations of the northern and southern modes of the East Asian winter monsoon. J Clim 27(2):835–851

    Article  Google Scholar 

  • Chou C, Lan C-W (2012) Changes in the annual range of precipitation under global warming. J Clim 25(1):222–235

    Article  Google Scholar 

  • Dee DP, Uppala S, Simmons A et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Duan A, Wang M, Lei Y et al (2013) Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980–2008. J Clim 26(1):261–275

    Article  Google Scholar 

  • Fan S, Fan G, Dong Y et al (2011) Research of the seasonal division method on Tibetan Plateau. Plateau Mt Meteorol Res 31(2):1674–2184 (in Chinese)

    Google Scholar 

  • Forsythe N, Fowler HJ, Li X-F et al (2017) Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nat Clim Change 7(9):664

    Article  Google Scholar 

  • Ha KJ, Heo KY, Lee SS et al (2012) Variability in the East Asian monsoon: a review. Meteorol Appl 19(2):200–215

    Article  Google Scholar 

  • Held IM, Hou AY (1980) Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J Atmos Sci 37(3):515–533

    Article  Google Scholar 

  • Holton JR (2004) An introduction to dynamic meteorology, 4th edn. Academic, Burlington

    Google Scholar 

  • Jhun J-G, Lee E-J (2004) A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J Clim 17(4):711–726

    Article  Google Scholar 

  • Ji Z, Kang S (2013) Projection of snow cover changes over China under RCP scenarios. Clim Dyn 41(3–4):589–600

    Article  Google Scholar 

  • Kang S, Xu Y, You Q et al (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environ Res Lett 5(1):015101

    Article  Google Scholar 

  • Kaplan A, Cane MA, Kushnir Y et al (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res Oceans 103(C9):18567–18589

    Article  Google Scholar 

  • Krishnamurti TN (1961) The subtropical jet stream of winter. J Meteorol 18(2):172–191

    Article  Google Scholar 

  • Lee S, Kim H-k (2003) The dynamical relationship between subtropical and eddy-driven jets. J Atmos Sci 60(12):1490–1503

    Article  Google Scholar 

  • Li J (2005) Why is there an early spring cooling shift downstream of the Tibetan Plateau? J Clim 18(22):4660–4668

    Article  Google Scholar 

  • Li L, Zhang Y (2014) Effects of different configurations of the East Asian subtropical and polar front jets on precipitation during the Mei-Yu season. J Clim 27(17):6660–6672

    Article  Google Scholar 

  • Li P, Zhou T, Chen X (2018) Water vapor transport for spring persistent rains over southeastern China based on five reanalysis datasets. Clim Dyn 51:4243–4257

    Article  Google Scholar 

  • Liu J, Chen R (2011) Studying the spatiotemporal variation of snow-covered days over China based on combined use of MODIS snow-covered days and in situ observations. Theor Appl Climatol 106(3–4):355–363

    Article  Google Scholar 

  • Liu Y, Wu G, Hong J et al (2012) Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II. Change. Clim Dyn 39(5):1183–1195

    Article  Google Scholar 

  • Lü J-M, Ju J-H, Kim S-J et al (2008) Arctic Oscillation and the autumn/winter snow depth over the Tibetan Plateau. J Geophys Res Atmos 113:D14

    Google Scholar 

  • Luo X, Zhang Y (2015) The linkage between upper-level jet streams over East Asia and East Asian winter monsoon variability. J Clim 28(22):9013–9028

    Article  Google Scholar 

  • Ma S, Zhou T (2015) Precipitation changes in wet and dry seasons over the 20th century simulated by two versions of the FGOALS model. Adv Atmos Sci 32(6):839–854

    Article  Google Scholar 

  • Mao JY (2010) Interannual variability of snow depth over the Tibetan Plateau and its associated atmospheric circulation anomalies. Atmos Ocean Sci Lett 03(4):213–218

    Article  Google Scholar 

  • Namias J, Clapp PF (1949) Confluence theory of the high tropospheric jet stream. J Meteorol 6(5):330–336

    Article  Google Scholar 

  • Pepin N, Bradley RS, Diaz HF et al (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Change 5(5):424–430

    Article  Google Scholar 

  • Qiu J (2008) China: the third pole. Nature 454(7203):393–396

    Article  Google Scholar 

  • Rayner N, Parker DE, Horton E et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos. https://doi.org/10.1029/2002jd002670

    Article  Google Scholar 

  • Reiter ER, Gao D-Y (1982) Heating of the Tibet Plateau and movements of the South Asian high during spring. Mon Weather Rev 110(11):1694–1711

    Article  Google Scholar 

  • Ren X, Yang X, Zhou T et al (2011) Diagnostic comparison of wintertime East Asian subtropical jet and polar-front jet: large-scale characteristics and transient eddy activities. Acta Meteorol Sin 25(1):21–33

    Article  Google Scholar 

  • Rossby C-G (1947) On the distribution of angular velocity in gaseous envelopes under the influence of large-scale horizontal mixing processes. Bull Am Meteorol Soc:53–68

  • Schiemann R, Lüthi D, Schär C (2009) Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region. J Clim 22(11):2940–2957

    Article  Google Scholar 

  • Seager R, Naik N, Vecchi GA (2010) Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Clim 23(17):4651–4668

    Article  Google Scholar 

  • Shaman J, Tziperman E (2005) The effect of ENSO on Tibetan Plateau snow depth: a stationary wave teleconnection mechanism and implications for the South Asian monsoons. J Clim 18(12):2067–2079

    Article  Google Scholar 

  • Singh G, Oh J-H (2005) Study on snow depth anomaly over Eurasia, Indian rainfall and circulations. J Meteorol Soc Jpn 83(2):237–250

    Article  Google Scholar 

  • Song C, Huang B, Ke L et al (2014) Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts. J Hydrol 514:131–144

    Article  Google Scholar 

  • Takaya K, Nakamura H (2001) A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci 58(6):608–627

    Article  Google Scholar 

  • Thompson DW, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25(9):1297–1300

    Article  Google Scholar 

  • Trenberth KE, Guillemot CJ (1995) Evaluation of the global atmospheric moisture budget as seen from analyses. J Clim 8(9):2255–2272

    Article  Google Scholar 

  • Wallace JM, Lim G-H, Blackmon ML (1988) Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides. J Atmos Sci 45(3):439–462

    Article  Google Scholar 

  • Wallace JM, Smith C, Bretherton CS (1992) Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J Clim 5(6):561–576

    Article  Google Scholar 

  • Wang Y, Xu X (2018) Impact of ENSO on the thermal condition over the Tibetan Plateau. J Meteorol Soc Jpn 96(3):269–281

    Article  Google Scholar 

  • Wang C, Yang K, Li Y et al (2017) Impacts of spatiotemporal anomalies of Tibetan Plateau snow cover on summer precipitation in Eastern China. J Clim 30(3):885–903

    Article  Google Scholar 

  • Wu Q (2010) Forcing of tropical SST anomalies by wintertime AO-like variability. J Clim 23(10):2465–2472

    Article  Google Scholar 

  • Yang S, Lau K-M, Kim K-M (2002) Variations of the East Asian jet stream and Asian–Pacific–American winter climate anomalies. J Clim 15(3):306–325

    Article  Google Scholar 

  • Yeh T, Wetherald R, Manabe S (1983) A model study of the short-term climatic and hydrologic effects of sudden snow-cover removal. Mon Weather Rev 111(5):1013–1024

    Article  Google Scholar 

  • You Q, Kang S, Ren G et al (2011) Observed changes in snow depth and number of snow days in the eastern and central Tibetan Plateau. Clim Res 46(2):171–183

    Article  Google Scholar 

  • Yuan C, Tozuka T, Miyasaka T et al (2009) Respective influences of IOD and ENSO on the Tibetan snow cover in early winter. Clim Dyn 33(4):509–520

    Article  Google Scholar 

  • Yuan C, Tozuka T, Yamagata T (2011) IOD influence on the early winter tibetan plateau snow cover: diagnostic analyses and an AGCM simulation. Clim Dyn 39(7–8):1643–1660

    Google Scholar 

  • Zou J, Cao C (1989) Climatological analysis of snowfall over the Qinghai-Xizang Plateau. Chin J Atmos Sci 13(4):400–409 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This study is supported by National Key R&D Program of China (2016YFA0601702 and 2017YFA0603804), National Natural Science Foundation of China (41771069). This study is also funded by “the Priority Academic Program Development of Jiangsu Higher Education Institutions” (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglong You.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Y., You, Q. How do westerly jet streams regulate the winter snow depth over the Tibetan Plateau?. Clim Dyn 53, 353–370 (2019). https://doi.org/10.1007/s00382-018-4589-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-018-4589-1

Keywords

Navigation