Spatial analysis of early-warning signals for a North Atlantic climate transition in a coupled GCM

Abstract

The climate system can potentially switch from one stable state to another. The closer a system is to a bifurcation point (i.e., ‘tipping point’), the more likely it is that even small perturbations can force the system to experience a state shift, e.g., a collapsing Atlantic meridional overturning circulation (AMOC) and associated cooling in parts of the North Atlantic. Here, we present an abrupt state transition from a warm to a cold North Atlantic climate state with expanded sea ice during an orbitally forced transient Holocene simulation performed with the Community Climate System Model version 3. The state transition is associated with a weakening of the AMOC by about 33% in this simulation. The changing background climate induced by slow external orbital forcing plays an important role for the abrupt climate shift. The model allows the identification of regions and variables that play a key role for a potential climate transition and show early-warning signals. Increase in autocorrelation and standard deviation as well as trends in skewness especially for sea-surface salinity in the northern North Atlantic are identified as robust early-warning signals, whereas no early-warning signals are found in the time series of the AMOC stream function.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet JT,DM, Pielke DM Jr, Pierrehumbert RA, Rhines RT, Stocker PB, Talley TF, Wallace LD, J.M (2003) Abrupt climate change. Science 299:2005–2010. https://doi.org/10.1126/science.1081056

    Article  Google Scholar 

  2. Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM, Pielke RA Jr, Pierrehumbert RA, Rhines PB, Stocker TF, Talley LD, Wallace JM (2005) Abrupt climate change. Science. https://doi.org/10.1126/science.1081056

    Article  Google Scholar 

  3. Bathiany S, Dijkstra H, Crucifix M, Dakos V, Brovkin V, Williamson MS, Lenton M, Scheffer S (2016) Beyond bifurcation: using complex models to understand and predict abrupt climate change. Dyn Stat Clim Syst 1:1. https://doi.org/10.1093/climsys/dzw004

    Article  Google Scholar 

  4. Bestelmeyer BT, Ellison AM, Fraser WR, Gorman KB, Holbrook SJ, Laney CM, Ohman MD, Peters DPC, Pillsbury FC, Rassweiler A, Schmitt RJ, Sharma S (2011) Analysis of abrupt transitions in ecological systems. Ecosphere 2(12):129. https://doi.org/10.1890/ES11-00216.1

    Article  Google Scholar 

  5. Boerlijst MC, Oudman T, de Roos AM (2013) Catastrophic collapse can occur without early-warning: examples of silent catastrophes in structured ecological models. PLoS One 8(4):e62033. https://doi.org/10.1371/journal.pone.0062033

    Article  Google Scholar 

  6. Boulton CA, Allison LC, Lenton TM (2014) Early warning signals of Atlantic meridional overturning circulation collapse in a fully coupled climate model. Nat Commun. https://doi.org/10.1038/ncoms6752

    Article  Google Scholar 

  7. Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt J-Y, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet Th, Hewitt CD, Kageyama M, Kitoh A, Laîné A, Loutre M-F, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007) Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum–Part 1: experiments and large-scale features. Clim Past 3(2):261–277

    Article  Google Scholar 

  8. Briegleb BP, Bitz CM, Hunke EC, Lipscomb WH, Holland MM, Schramm JL, Moritz RE (2004) Scientific description of the sea-ice component in the Community Climate System Model, Version Three. Tech., NCAR/TN-463STR, National Center for Atmospheric Research, Boulder

    Google Scholar 

  9. Broecker WS, Bond G, Klas M, Bonani G, Wolfli W (1990) A salt oscillator in the glacial Atlantic? 1. The concept. Paleoceanography 5:469–477. https://doi.org/10.1029/PA005i004p00469

    Article  Google Scholar 

  10. Butitta VL, Carpenter SR, Loken LC, Pace ML, Stanley EH (2017) Spatial early warning signals in a lake manipulation. Ecosphere. https://doi.org/10.1002/ecs2.1941

    Article  Google Scholar 

  11. Clement AC, Peterson LC (2008) Mechanisms of abrupt climate change of the last glacial period. Rev Geophys 46:RG4002. https://doi.org/10.1029/2006RG000204

    Article  Google Scholar 

  12. Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006a) The community climate system model version (CCSM3). J Clim 19:2122–2143

    Article  Google Scholar 

  13. Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DI, Briegleb BP (2006b) The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J Clim 19:2144–2161. https://doi.org/10.1175/JCLI3760.1

    Article  Google Scholar 

  14. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277,. https://doi.org/10.1126/science.289.5477.270

    Article  Google Scholar 

  15. Dakos V, Scheffer M, van Nes EH, Brovkin V, Petoukhov V, Held H (2008) Slowing down as an early warning signal for abrupt climate change. Proc Nat Aca Sci 105(35):14308–14312

    Article  Google Scholar 

  16. Dakos V, van Nes EH, Donangelo R, Fort H, Scheffer M (2010) Spatial correlation as leading indicator of catastrophic shifts. Theor Ecol 3:163–174

    Article  Google Scholar 

  17. Dakos V, Carpenter SR, Brock WA, Ellison AM, Guttal V, Ives AR, Kéfi S, Livina V, Seekell DA, van Nes EH, Scheffer M (2012) Methods for detecting early-warnings of critical transitions in time series illustrated using simulated ecological data. PLoS One 7(7):e41010. https://doi.org/10.1371/journal.pone.0041010

    Article  Google Scholar 

  18. de Vernal A, Hillaire-Marcel C (2000) Sea-ice cover, sea surface salinity and halo-/thermocline structure of the northwest North Atlantic: modern versus full glacial conditions. Quat Sci Rev 19:65–85

    Article  Google Scholar 

  19. Ditlevsen PD, Johnson SJ (2010) Tipping points and wishful thinking. Geophys Res Lett 37:L19703

    Article  Google Scholar 

  20. Drake JM, Griffen BD (2010) Early-warning signals of extinction in deteriorating environments. Nature 467:456–459

    Article  Google Scholar 

  21. Drijfhout S, van Oldenborgh GJ, Cimatoribus A (2012) Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J Clim 25:8373–8379

    Article  Google Scholar 

  22. Drijfhout S, Gleeson E, Dijkstra HA, Livina. V (2013) Spontaneous abrupt climate change due to an atmospheric blocking–sea-ice–ocean feedback in an unforced climate model simulation. PNAS 110(49):19713–19718. https://doi.org/10.1073/pnas.1304912110

    Article  Google Scholar 

  23. Drijfhout S, Bathiany S, Beaulieu C, Brovkin V, Claussen M, Huntingford C, Scheffer M, Sgubin G, Swingedouw D (2015) Catalogue of abrupt shifts in intergovernmental panel on climate change climate models. Proc Nat Acad Sci USA 112(43):E5777–E5786

    Article  Google Scholar 

  24. Franzke LE, O’Kane TJ (2017) Nonlinear and stochastic climate dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  25. Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, Matthes K, Cubasch U, Fleitmann D, Harrison G, Hood L, Luterbacher J, Meehl GA, Shindell D, van Geel B, White, W (2010) Solar influences on climate. Rev Geophys 48:RG4001

    Article  Google Scholar 

  26. Hall A, Stouffer RJ (2001) An abrupt climate in a coupled ocean-atmosphere simulation without external forcing. Nature 409:171–174

    Article  Google Scholar 

  27. Halley JM, Kugiumtzis D (2011) Nonparametric testing of variability and trend in some climatic records. Clim Change 109:549–568

    Article  Google Scholar 

  28. Hansen J, Sato M, Hearty P, Ruedy R, Kelley M, Masson-Delmotte V, Russell G, Tselioudis G, Cao J, Rignot E, Velicogna I, Tormey B, Donovan B, Kandiano E, von Schuckmann K, Pushker K, Legrande A, Bauer M, Lo K-W (2016) Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling and modern observations that 2 °C global warming could be dangerous. Atmos Chem Phys 16:3761–3812. https://doi.org/10.5194/acp-16-3761-2016

    Article  Google Scholar 

  29. Hawkins E, Smith RS, Allison LC, Gregory J,M, Woolings TJ, Pohlmann H, de Cuevas B (2011) Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophys Res Lett 38:L10605. https://doi.org/10.1029/2011GL047208

    Article  Google Scholar 

  30. Held H, Kleinen T (2004) Detection of climate system bifurcations by degenerate fingerprinting. Geophys Res Lett 31:L23207

    Article  Google Scholar 

  31. Jackson LC, Smith RS, Wood RA (2016) Ocean and atmosphere feedbacks affecting AMOC hysteresis in a GCM. Clim Dyn 49:173–191. https://doi.org/10.1001/s00382-016-3386-8

    Article  Google Scholar 

  32. Jiang H, Eiriksson J, Schulz M, Knudsen K-L, Seidenkrantz MS (2005) Evidence for solar forcing of sea-surface temperature on the North Icelandic shelf during the late Holocene. Geology 33:73–76. https://doi.org/10.1130/G21130.1

    Article  Google Scholar 

  33. Jongma JI, Prange M, Renssen H, Schulz M (2007) Amplification of Holocene multicentennial climate forcing by mode transitions in North Atlantic overturning circulation. Geophys Res Lett 34:L15706. https://doi.org/10.1029/2007GL030642

    Article  Google Scholar 

  34. Kleppin H, Jochum M, Otto-Bliesner B, Shields CA, Yeager S (2015) Stochastic atmospheric forcing as a cause of greenland climate transitions. J Clim 28.19:7741–7763. https://doi.org/10.1175/JCLI-D-14-00728.1

    Article  Google Scholar 

  35. Klus A, Prange M, Varma V, Tremblay LB, Schulz M (2018) Abrupt cold events in the North Atlantic in a transient Holocene simulation. Clim Past 14(8):1165–1178. https://doi.org/10.5194/cp-14-1165-2018

    Article  Google Scholar 

  36. Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S (2007) On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys 45:RG2001. https://doi.org/10.1029/2004RG000166

    Article  Google Scholar 

  37. LeBaron B (1992) Some relations between volatility and serial correlations in stock market returns. J Bus 65:199–219

    Article  Google Scholar 

  38. Lenton TM (2011) Early-warning of climate tipping points. Nat Clim Change 1:201–209

    Article  Google Scholar 

  39. Lenton T (2012) Future climate surprise. In: Henderson-Sellers A, McGuffie K (eds) The future of the World’s climate. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-386917-3.00017-8

    Google Scholar 

  40. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf W, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci USA 105:1786–1793

    Article  Google Scholar 

  41. Lenton TM, Livina VN, Dakos V, Van Nes EH, Scheffer M (2012a) Early-warning of climate tipping points from critical slowing down: comparing methods to improve robustness. Philos Trans A Math Phys Eng Sci 370(1962):1185–1204. https://doi.org/10.1098/rsta.2011.0304

    Article  Google Scholar 

  42. Lenton TM, Livina VN, Scheffer M (2012b) Climate bifurcation during the last deglaciation? Clim Past 8:1127–1139

    Article  Google Scholar 

  43. Lenton TM, Dakos V, Bathiany S, and Scheffer M (2017) Observed trends in the magnitude and persistence of monthly temperature variability. Nature 7:5940. https://doi.org/10.1038/s41598-017-06382-x

    Article  Google Scholar 

  44. Li C, Bitz CM (2010) Can North Atlantic sea-ice anomalies account for Dansgaard–Oeschger climate signals? J Clim 23:5457–5475. https://doi.org/10.1175/2010JCLI3409.1

    Article  Google Scholar 

  45. Li C, Battisti DS, Schrag DP, Tziperman E (2005) Abrupt climate shifts in Greenland due to displacements of the sea-ice edge. Geophys Res Lett. https://doi.org/10.1029/2005GL023492

    Article  Google Scholar 

  46. Livina V, Lenton T (2007) A modified method for detecting incipient bifurcations in a dynamical system. Geophy Res Lett 34:1–5

    Article  Google Scholar 

  47. Livina VN, Kwasniok F, Lenton TM (2010) Potential analysis reveals changing number of climate states during the last 60 kyr. Clim Past 6:77–82

    Article  Google Scholar 

  48. Lohmann G, Gerdes R (1998) Sea Ice Effects on the sensitivity of the Thermohaline Circulation. J Clim 11:2789–2803

    Article  Google Scholar 

  49. Madonna E, Li C, Grams CM, Woollings T (2017) The link between eddy-driven jet variability and weather regimes in the North Atlantic-European sector. Q J R Meteorol Soc 143:2960–2972. https://doi.org/10.1002/qj.3155

    Article  Google Scholar 

  50. Manabe S, Stouffer R (1999) Are two modes of thermohaline circulation stable? Tellus A Dyn Meteorol Oceanogr 51(3):400–411. https://doi.org/10.3402/tellusa.v51i3.13461

    Article  Google Scholar 

  51. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259. https://doi.org/10.2307/1907187

    Article  Google Scholar 

  52. Meals DW, Spooner J, Dressing SA, Harcum JB (2011) Statistical analysis for monotonic trends. U.S. Environmental Protection Agency, Tech Notes 6, pp 1–23

  53. Müller J, Massé G, Stein R, Belt ST (2009) Variability of sea-ice conditions in the Fram Strait over the past 30,000 years. Nat Geosci 2(11):772–776

    Article  Google Scholar 

  54. Ortega P, Robson JI, Sutton RT, Martins A (2017) Mechanisms of decadal variability in the Labrador Sea and the wider North Atlantic in a high-resolution climate model. Clim Dyn 49:2625–2647

    Article  Google Scholar 

  55. Prange M (2008) The low-resolution CCSM2 revisited: new adjustments and a present-day control run. Ocean Sci 4:151–181

    Article  Google Scholar 

  56. Prange M, Lohmann G, Paul A (2003) Influence of vertical mixing on the thermohaline hysteresis: analyses of an OGCM. J Phys Oceanogr 33(8):1707–1721

    Article  Google Scholar 

  57. Rahmstorf S (1995) Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378:145–149

    Article  Google Scholar 

  58. Rahmstorf S (1996) On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim Dyn 12:799–811. https://doi.org/10.1007/s003820050144

    Article  Google Scholar 

  59. Rahmstorf S (2002) Ocean circulation and climate during the past 120,000 years. Nature 419:207–214. https://doi.org/10.1038/nature01090

    Article  Google Scholar 

  60. Rahmstorf S, Box JE, Feuler G, Mann ME, Robinson A, Rutherford S, Schaffernicht EJ (2015) Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat Clim Change 5:475–480

    Article  Google Scholar 

  61. Robson J, Ortega P, Sutton R (2016) A reversal of climatic trends in the North Atlantic since 2005. Nat Geosci 9:513–517

    Article  Google Scholar 

  62. Saba VS, Griffies SM, Anderson WG, Winton M, Alexander MA, Delworth TL, Hare JA, Harrison MJ, Rosati A, Vecchi GA, Zhang R (2016) Enhanced warming of the Northwest Atlantic Ocean under climate change. J Geophys Res Oceans 121:118–132. https://doi.org/10.1002/2015JC011346

    Article  Google Scholar 

  63. Scheffer M, Hosper SH, Meijer ML, Moss B (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279

    Article  Google Scholar 

  64. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  Google Scholar 

  65. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature. https://doi.org/10.1038/nature08227

    Article  Google Scholar 

  66. Schulz M, Prange M, Klocker A (2007) Low-frequency oscillations of the Atlantic Ocean meridional overturning circulation in a coupled climate model. Clim Past 3:97–107

    Article  Google Scholar 

  67. Sévellec F, Fedorov AV (2013) Millennial variability in an idealized ocean model: predicting the AMOC regime shifts. Am Meteorol Soc 27:3551–3564. https://doi.org/10.1175/JCLI-D-13-00450.1

    Article  Google Scholar 

  68. Sigl M et al (2015) Timing and climate forcing of volcanic eruptions for the past 2,500 year. Nature 523:543–549. https://doi.org/10.1038/nature14565

    Article  Google Scholar 

  69. Smith R, Gent P (2004) Ocean component of the Community Climate System model (CCSM2.0 and 3.0). Reference manual for the Parallel Ocean Program (POP). National Center for Atmospheric Research and LANL, Los Alamos

    Google Scholar 

  70. Sommer S, van Benthem KJ, Fontaneto D, Ozgul A (2017) Are generic early-warning signals reliable indicators of population collapse in rotifers? Hydrobiologia. https://doi.org/10.1007/s10750-016-2948-7

    Article  Google Scholar 

  71. Srokosz M, Baringer M, Bryden H, Cunningham S, Delworth T, Lozier S, Marotzke J, Sutton R (2012) Past, present, and future change in the Atlantic meridional overturning circulation. Am Meteorol Soc. https://doi.org/10.1175/BAMS-D-11-00151.1

    Article  Google Scholar 

  72. Steinhilber F, Beer J, Fröhlich C (2009) Total solar irradiance during the Holocene. Geophys Res Lett 36:L19704. https://doi.org/10.1029/2009GL040142

    Article  Google Scholar 

  73. Strogatz SH (1994) Nonlinear dynamics and chaos. With applications to physics, biology, chemistry and engineering. Addison-Wesley, Perseus Book Publishing, Reading

    Google Scholar 

  74. Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time-series—the method of surrogate data. Phys D 58:77–94

    Article  Google Scholar 

  75. Timmermann A, Gildor H, Schulz M, Tziperman E (2003) Coherent resonant millennial-scale climate oscillations triggered by massive meltwater pulses. J Clim 16:2569–2585

    Article  Google Scholar 

  76. van Nes EH, Scheffer M (2007) Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift. Am Nat 169:738 – 747

    Article  Google Scholar 

  77. Varma V, Prange M, Schulz M (2016) Transient simulations of the present and the last interglacial climate using the Community Climate System Model version 3: effects of orbital acceleration. Geosci Model Dev 9:3859–3873. https://doi.org/10.5194/gmd-9-3859-2016

    Article  Google Scholar 

  78. Veraart AJ, Faassen EJ, Dakos V, van Nes EH, Lürling M, Scheffer M (2012) Recovery rates reflect distance to a tipping point in a living system. Nature 481:357–359. https://doi.org/10.1038/nature10723

    Article  Google Scholar 

  79. Wanner H, Beer J, Bültikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Prentice IC, Solomina O, Stocker TF, Tarasov P, Wagner M, Widmann M (2008) Mid- to Late Holocene climate change: an overview. Quat Sci Rev 27(19–20):1791–1828. https://doi.org/10.1016/j.quascirev.2008.06.013

    Article  Google Scholar 

  80. Wissel C (1984) A universal law of the characteristic return time near thresholds. Oecologia 65:101–107. https://doi.org/10.1007/BF00384470

    Article  Google Scholar 

  81. Yeager SG, Shields CA, Large WG, Hack JJ (2006) The low-resolution CCSM3. J Clim 19(11):2545–2556

    Article  Google Scholar 

  82. Yoshimori M, Raible CC, Stocker TF, Renold M (2010) Simulated decadal oscillations of the Atlantic meridional overturning circulation in a cold climate state. Clim Dyn 34:101–121. https://doi.org/10.1007/s00382-009-0540-9

    Article  Google Scholar 

  83. Zhang X, Prange M, Merkel U, Schulz M (2014) Instability of the Atlantic overturning circulation during Marine Isotope Stage 3. Geophys Res Lett. https://doi.org/10.1002/2014GL060321

    Article  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the constructive comments by three anonymous reviewers, which substantially improved the presentation of our findings. This project was supported by the Deutsche Forschungsgemeinschaft (DFG) through the International Research Training Group “Processes and impacts of climate change in the North Atlantic Ocean and the Canadian Arctic” (IRTG 1904 ArcTrain) and the German climate modeling initiative PalMod. The authors would like to thank Ute Merkel for providing the restart files of the pre-industrial control run. A special thanks goes to Vasilis Dakos for making available the earlywarnings package. The CCSM3 experiments were performed with resources provided by the North-German Supercomputing Alliance (HLRN).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matthias Prange.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1898 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Klus, A., Prange, M., Varma, V. et al. Spatial analysis of early-warning signals for a North Atlantic climate transition in a coupled GCM. Clim Dyn 53, 97–113 (2019). https://doi.org/10.1007/s00382-018-4567-7

Download citation

Keywords

  • Early-warning signals
  • Climate transition
  • North Atlantic
  • AMOC