Skip to main content

A comparison of CCSM4 high-resolution and low-resolution predictions for south Florida and southeast United States drought

Abstract

It is important to have confidence in seasonal climate predictions of precipitation, particularly related to drought, as implications can be far-reaching and costly—this is particularly true for Florida. Precipitation can vary on fine spatial resolutions, and high-resolution coupled models may be needed to correctly represent precipitation variability. We study south Florida and southeast United States drought in Community Climate System version 4 low resolution (1° atmosphere/ocean) and high-resolution (0.5°atmosphere/0.1°ocean) predictions for time means ranging from 3 to 36 months. The very high-resolution in the ocean is of interest here given the potential importance of Gulf Stream on south Florida rainfall. Skill of shorter time-mean South Florida predictions (i.e. 3- and 12-months) are not impacted by increased resolution, but skill of 36-month mean south Florida precipitation is somewhat increased in the high resolution predictions. Notably, over the broader southeast United States the high-resolution model has higher skill for the 36-month mean rainfall predictions, associated with an improved relationship with tropical Pacific and Gulf Stream SSTA. Why this improvement in the broader southeast United States does not extend to Florida is an open question, but does suggest that even further resolution refinements may be needed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Aumen NG, Havens KE, Best GR, Berry L (2015) Predicting ecological responses of the Florida everglades to possible future climate scenarios: introduction. Environ Manag 55:741–748. https://doi.org/10.1007/s00267-014-0439-z

    Article  Google Scholar 

  2. Barnston AG, Tippett MK, L’Heureux ML et al (2011) Skill of real-time seasonal ENSO model predictions during 2002–11: is our capability increasing? Bull Am Meteorol Soc 93:631–651. https://doi.org/10.1175/BAMS-D-11-00111.1

    Article  Google Scholar 

  3. Bastola S, Misra V (2013) Sensitivity of hydrological simulations of southeastern United States watersheds to temporal aggregation of rainfall. J Hydrometeorol 14:1334–1344. https://doi.org/10.1175/JHM-D-12-096.1

    Article  Google Scholar 

  4. Boyle J, Klein SA (2010) Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating for the TWP-ICE period. J Geophys Res Atmos. https://doi.org/10.1029/2010JD014262

    Google Scholar 

  5. Capotondi A, Wittenberg AT, Newman M et al (2014) Understanding ENSO diversity. Bull Am Meteorol Soc. https://doi.org/10.1175/BAMS-D-13-00117.1

    Google Scholar 

  6. Curtis S (2008) The Atlantic multidecadal oscillation and extreme daily precipitation over the US and Mexico during the hurricane season. Clim Dyn 30:343–351. https://doi.org/10.1007/s00382-007-0295-0

    Article  Google Scholar 

  7. Delworth TL, Rosati A, Anderson W et al (2011) Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J Clim 25:2755–2781. https://doi.org/10.1175/JCLI-D-11-00316.1

    Article  Google Scholar 

  8. Dommenget D, Bayr T, Frauen C (2013) Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation. Clim Dyn 40:2825–2847. https://doi.org/10.1007/s00382-012-1475-0

    Article  Google Scholar 

  9. Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080

    Article  Google Scholar 

  10. Flato G, Marotzke J, Abiodun B et al (2013) Evaluation of climate models. In: Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Clim Change 2013 5:741–866

    Google Scholar 

  11. Gent PR, Yeager SG, Neale RB et al (2010) Improvements in a half degree atmosphere/land version of the CCSM. Clim Dyn 34:819–833. https://doi.org/10.1007/s00382-009-0614-8

    Article  Google Scholar 

  12. Gent PR, Danabasoglu G, Donner LJ et al (2011) The community climate system model version 4. J Clim 24:4973–4991. https://doi.org/10.1175/2011JCLI4083.1

    Article  Google Scholar 

  13. Giorgi F, Christensen J, Hulme M et al (2001) Regional climate information-evaluation and projections. In: Clim Change 2001 Sci Basis Contrib Work Group Third Assess Rep Intergouvernmental Panel Clim Change Houghton JT Aleds Camb Univ Press Camb United Kongdom N Y US

  14. Grimit EP, Mass CF (2007) Measuring the ensemble spread–error relationship with a probabilistic approach: stochastic ensemble results. Mon Weather Rev 135:203–221. https://doi.org/10.1175/MWR3262.1

    Article  Google Scholar 

  15. Infanti JM, Kirtman BP (2015) North American rainfall and temperature prediction response to the diversity of ENSO. Clim Dyn. https://doi.org/10.1007/s00382-015-2749-0

    Google Scholar 

  16. Infanti JM, Kirtman BP (2016) Prediction and predictability of land and atmosphere initialized CCSM4 climate forecasts over North America. J Geophys Res Atmos 121:12690–12701. https://doi.org/10.1002/2016JD024932

    Article  Google Scholar 

  17. Infanti JM, Kirtman BP (2017) CGCM and AGCM seasonal climate predictions: a study in CCSM4. J Geophys Res Atmos 122:7416–7432. https://doi.org/10.1002/2016JD026391

    Article  Google Scholar 

  18. Jia L, Yang X, Vecchi GA et al (2014) Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J Clim 28:2044–2062. https://doi.org/10.1175/JCLI-D-14-00112.1

    Article  Google Scholar 

  19. Jin E, Kinter J, Wang B et al (2008) Current status of ENSO prediction skill in coupled ocean–atmosphere models. Clim Dyn 31:647–664. https://doi.org/10.1007/s00382-008-0397-3

    Article  Google Scholar 

  20. Jung T, Miller MJ, Palmer TN et al (2011) High-resolution global climate simulations with the ECMWF model in project athena: experimental design, model climate, and seasonal forecast skill. J Clim 25:3155–3172. https://doi.org/10.1175/JCLI-D-11-00265.1

    Article  Google Scholar 

  21. Kirtman BP, Min D (2009) Multimodel ensemble ENSO prediction with CCSM and CFS. Mon Weather Rev 137:2908–2930. https://doi.org/10.1175/2009MWR2672.1

    Article  Google Scholar 

  22. Kirtman B, Bitz C, Bryan F et al (2012a) Impact of ocean model resolution on CCSM climate simulations. Clim Dyn 39:1303–1328. https://doi.org/10.1007/s00382-012-1500-3

    Article  Google Scholar 

  23. Kirtman BP, Bitz C, Bryan F et al (2012b) Impact of ocean model resolution on CCSM climate simulations. Clim Dyn 39:1303–1328. https://doi.org/10.1007/s00382-012-1500-3

    Article  Google Scholar 

  24. Kirtman BP, Infanti JM, Larson SM (2013) The diversity of El Niño in the North American multi-model prediction system. In: US CLIVAR Var, vol 1(2). http://www.usclivar.org/sites/default/files/USCLIVAR_VARIATIONS_11_2_Summer2013.pdf. Accessed 16 Apr 2013

  25. Kirtman BP, Min D, Infanti JM et al (2014) The North American multimodel ensemble: phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull Am Meteorol Soc 95:585–601. https://doi.org/10.1175/BAMS-D-12-00050.1

    Article  Google Scholar 

  26. Kwon H-H, Lall U, Obeysekera J (2009) Simulation of daily rainfall scenarios with interannual and multidecadal climate cycles for South Florida. Stoch Environ Res Risk Assess 23:879–896. https://doi.org/10.1007/s00477-008-0270-2

    Article  Google Scholar 

  27. Laurindo LC, Siqueira L, Mariano AJ, Kirtman B (2018) Cross-spectral analysis of the SST/10-m wind speedcoupling resolved by satellite products and climate model simulations. Clim Dyn. https://doi.org/10.1007/s00382-018-4434-6

    Google Scholar 

  28. Leathers DJ, Yarnal B, Palecki MA (1991) The Pacific/North American teleconnection pattern and United States climate. Part I: regional temperature and precipitation associations. J Clim 4:517–528

    Article  Google Scholar 

  29. Li L, Li W, Kushnir Y (2012) Variation of the North Atlantic subtropical high western ridge and its implication to Southeastern US summer precipitation. Clim Dyn 39:1401–1412. https://doi.org/10.1007/s00382-011-1214-y

    Article  Google Scholar 

  30. Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58:35–44

    Article  Google Scholar 

  31. Manuel J (2008) Drought in the southeast: lessons for water management. Environ Health Perspect 116:A168–A171. https://doi.org/10.1289/ehp.116-a168

    Google Scholar 

  32. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. American Meteorological Society, Boston, pp 179–183

    Google Scholar 

  33. Minobe S, Kuwano-Yoshida A, Komori N et al (2008) Influence of the Gulf Stream on the troposphere. Nature 452:206–209. https://doi.org/10.1038/nature06690

    Article  Google Scholar 

  34. Minobe S, Miyashita M, Kuwano-Yoshida A et al (2010) Atmospheric response to the Gulf Stream: seasonal variations. J Clim 23:3699–3719. https://doi.org/10.1175/2010JCLI3359.1

    Article  Google Scholar 

  35. Misra V, DiNapoli SM (2013) Understanding the wet season variations over Florida. Clim Dyn 40:1361–1372. https://doi.org/10.1007/s00382-012-1382-4

    Article  Google Scholar 

  36. Misra V, Mishra A (2016) The oceanic influence on the rainy season of Peninsular Florida. J Geophys Res Atmos 121:7691–7709. https://doi.org/10.1002/2016JD024824

    Article  Google Scholar 

  37. Misra V, Carlson E, Craig R, Enfield D (2011) Climate scenarios: a Florida-Centric view

  38. Mo KC, Schemm JE (2008) Relationships between ENSO and drought over the southeastern United States. Geophys Res Lett 35:5. https://doi.org/10.1029/2008GL034656

    Article  Google Scholar 

  39. Moses CS, Anderson WT, Saunders C, Sklar F (2013) Regional climate gradients in precipitation and temperature in response to climate teleconnections in the Greater Everglades ecosystem of South Florida. J Paleolimnol 49:5–14. https://doi.org/10.1007/s10933-012-9635-0

    Article  Google Scholar 

  40. Nag B, Misra V, Bastola S (2014) Validating ENSO teleconnections on Southeastern U.S. winter hydrology. Earth Interact 18:1–23. https://doi.org/10.1175/EI-D-14-0007.1

    Article  Google Scholar 

  41. O’Brien TA, Collins WD, Kashinath K et al (2016) Resolution dependence of precipitation statistical fidelity in hindcast simulations. J Adv Model Earth Syst 8:976–990. https://doi.org/10.1002/2016MS000671

    Article  Google Scholar 

  42. Obeysekera J, Browder J, Hornung L, Harwell MA (1999) The natural South Florida system I: climate, geology, and hydrology. Urban Ecosyst 3:223–244. https://doi.org/10.1023/A:1009552500448

    Article  Google Scholar 

  43. Obeysekera J, Irizarry M, Park J et al (2011) Climate change and its implications for water resources management in south Florida. Stoch Environ Res Risk Assess 25:495–516. https://doi.org/10.1007/s00477-010-0418-8

    Article  Google Scholar 

  44. Obeysekera J, Barnes J, Nungesser M (2015) Climate sensitivity runs and regional hydrologic modeling for predicting the response of the greater Florida everglades ecosystem to climate change. Environ Manag 55:749–762. https://doi.org/10.1007/s00267-014-0315-x

    Article  Google Scholar 

  45. Ortegren JT, Knapp PA, Maxwell JT et al (2011) Ocean–atmosphere influences on low-frequency warm-season drought variability in the Gulf Coast and Southeastern United States. J Appl Meteorol Climatol 50:1177–1186. https://doi.org/10.1175/2010JAMC2566.1

    Article  Google Scholar 

  46. Ortegren JT, Weatherall A, Maxwell JT (2014) Subregionalization of low-frequency summer drought variability in the southeastern United States. Prof Geogr 66:323–332. https://doi.org/10.1080/00330124.2013.787008

    Article  Google Scholar 

  47. Paolino DA, Kinter JL, Kirtman BP et al (2011) The impact of land surface and atmospheric initialization on seasonal forecasts with CCSM. J Clim 25:1007–1021. https://doi.org/10.1175/2011JCLI3934.1

    Article  Google Scholar 

  48. Pielke RA, Walko RL, Steyaert LT et al (1999) The influence of anthropogenic landscape changes on weather in South Florida. Mon Weather Rev 127:1663–1673. https://doi.org/10.1175/1520-0493(1999)127%3C1663:TIOALC%3E2.0.CO;2

    Article  Google Scholar 

  49. Ropelewski CF, Halpert MS (1986) North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon Weather Rev 114:2352–2362. https://doi.org/10.1175/1520-0493(1986)114%3C2352:NAPATP%3E2.0.CO;2

    Article  Google Scholar 

  50. Saha S, Moorthi S, Pan H-L et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057. https://doi.org/10.1175/2010BAMS3001.1

    Article  Google Scholar 

  51. Schmidt N, Lipp EK, Rose JB, Luther ME (2001) ENSO Influences on seasonal rainfall and river discharge in Florida. J Clim 14:615–628. https://doi.org/10.1175/1520-0442(2001)014%3C0615:EIOSRA%3E2.0.CO;2

    Article  Google Scholar 

  52. Shields CA, Kiehl JT, Meehl GA (2016) Future changes in regional precipitation simulated by a half-degree coupled climate model: sensitivity to horizontal resolution. J Adv Model Earth Syst 8:863–884. https://doi.org/10.1002/2015MS000584

    Article  Google Scholar 

  53. Siqueira L, Kirtman BP (2016) Atlantic near-term climate variability and the role of a resolved Gulf Stream. Geophys Res Lett 43:3964–3972. https://doi.org/10.1002/2016GL068694

    Article  Google Scholar 

  54. Smith SM, Gawlik DE, Rutchey K et al (2003) Assessing drought-related ecological risk in the Florida Everglades. J Environ Manag 68:355–366. https://doi.org/10.1016/S0301-4797(03)00102-6

    Article  Google Scholar 

  55. Taylor KE, Stouffer RJ, Meehl GA (2011) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  56. Teegavarapu RS (2012) Floods in a changing climate: extreme precipitation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  57. Wehner MF, Reed KA, Li F et al (2014) The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J Adv Model Earth Syst 6:980–997. https://doi.org/10.1002/2013MS000276

    Article  Google Scholar 

  58. Wu R, Kirtman B (2007) Regimes of seasonal air–sea interaction and implications for performance of forced simulations. Clim Dyn 29:393–410. https://doi.org/10.1007/s00382-007-0246-9

    Article  Google Scholar 

  59. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on guage observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558. https://doi.org/10.1175/1520-0477(1997)078%3C2539:GPAYMA%3E2.0.CO;2

    Article  Google Scholar 

  60. Zorn MR, Waylen PR (1997) Seasonal response of mean monthly streamflow to El Niño/Southern Oscillation in North Central Florida. Prof Geogr 49:51–62. https://doi.org/10.1111/0033-0124.00055

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported through the Postdocs Applying Climate Expertise Fellowship Program sponsored by the NOAA Climate Program Office and administered by the UCAR Cooperative Programs for the Advancement of Earth System Science (CPAESS). The authors would like to thank the NMME program partners, Dughong Min, the University of Miami Center for Computational Science, and anonymous reviewers who greatly improved the quality of this manuscript. CCSM4 NMME prediction data can be accessed at http://www.cpc.ncep.noaa.gov/products/NMME/. CCSM4 high resolution predictive runs are archived at the Center for Computational Science at the University of Miami and are available upon request. The free software NCAR Command Language was used to create the plots and analyze data. Funding was provided by University Corporation for Atmospheric Research (US) (Grant no. PACE Fellowship) and National Science Foundation (Grant no. OCE 1419569).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Johnna M. Infanti.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Infanti, J.M., Kirtman, B.P. A comparison of CCSM4 high-resolution and low-resolution predictions for south Florida and southeast United States drought. Clim Dyn 52, 6877–6892 (2019). https://doi.org/10.1007/s00382-018-4553-0

Download citation

Keywords

  • Climate
  • Prediction
  • CCSM4
  • Rainfall
  • Florida
  • Southeast US