Skip to main content

Role of cumulus parameterization on the seasonal and diurnal precipitation over Southeast Asia in RegCM4

Abstract

This study examines the sensitivity of the seasonal mean and diurnal precipitation simulated by the Regional Climate Model version 4 (RegCM4) to cumulus parameterization in the Southeast Asia (SEA) domain. Based on the same lateral boundary conditions from the interim European Centre for Medium-Range Weather Forecast reanalysis data (ERA-interim), RegCM4 integrations using the Emanuel cumulus convection scheme over all grid boxes in the model (EE), and those using the Emanuel (Grell) scheme in ocean (land) areas (referred to as the mixed scheme, or MC) were carried out at a 50 km × 50 km horizontal resolution in the period of 2000–2010. It was found that both MC and EE have comparable performance in capturing the mean circulation features in SEA during boreal summer. Simulations based on EE tend to produce a seasonal wet bias over South China Sea (SCS). In comparison, while the mean rainfall over SCS and east of the Philippines is improved by the use of MC, conditions in western coastal IndoChina become too wet. For the diurnal cycle (DC) of precipitation, it was reasonably well captured by both cumulus schemes; however, in comparison to EE, MC consistently underestimates the DC amplitude. Empirical Orthogonal Function (EOF) analyses revealed that, while the first leading mode of diurnal rainfall was reproduced by both schemes, the second mode was suppressed in the MC simulations. In particular, this mode corresponds to the afternoon rainfall over inland locations including western IndoChina and southeastern China. MC tends to produce more cloudy conditions, cooler surface air temperature and hence a more stable environment and weaker convection at 1200–1500 local time in these locations. Over the Maritime Continent, the second mode is associated with evening-to-midnight rainfall peaks in the mountain ranges of Sumatra, Borneo and New Guinea. There is weaker orographic precipitation at 1800–0000 local time by MC compared to EE, associated with weaker diurnal convergence and upward motion as well as a drier environment in the MC simulations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Aldrian E, Dwi Susanto R (2003) Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int J Climatol 23:1435–1452. https://doi.org/10.1002/joc.950

    Article  Google Scholar 

  2. Aves S, Johnson R (2008) The diurnal cycle of convection over the northern South China Sea. J Meteorol Soc Japan 86:919–934. https://doi.org/10.2151/jmsj.86.919

    Article  Google Scholar 

  3. Chow KC, Chan JCL, Pal JS, Giorgi F (2006) Convection suppression criteria applied to the MIT cumulus parameterization scheme for simulating the Asian summer monsoon. Geophys Res Lett 33:1–6. https://doi.org/10.1029/2006GL028026

    Article  Google Scholar 

  4. Cruz FT, Sasaki H, Narisma GT (2016) Assessing the sensitivity of the non-hydrostatic regional climate model to boundary conditions and convective schemes over the Philippines. J Meteorol Soc Jpn Ser II 94A:165–179. https://doi.org/10.2151/jmsj.2015-059

    Article  Google Scholar 

  5. da Rocha RP, Morales CA, Cuadra SV, Ambrizzi T (2009) Precipitation diurnal cycle and summer climatology assessment over South America: an evaluation of Regional Climate Model version 3 simulations. J Geophys Res 114:1–19. https://doi.org/10.1029/2008JD010212

    Article  Google Scholar 

  6. Dai A (2001) Global precipitation and thunderstorm frequencies. Part I: seasonal and interannual variations. J Clim 14:1092–1111. https://doi.org/10.1175/1520-0442(2001)014%3C1092:GPATFP%3E2.0.CO;2

    Article  Google Scholar 

  7. Dai A, Trenberth KE (2004) The diurnal cycle and its depiction in the community climate system model. J Clim 17:930–951. https://doi.org/10.1175/1520-0442(2004)017%3C0930:TDCAID%3E2.0.CO;2

    Article  Google Scholar 

  8. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  9. Ding Y, Chan JCL (2005) The East Asian summer monsoon: an overview. Meteorol Atmos Phys 89:117–142. https://doi.org/10.1007/s00703-005-0125-z

    Article  Google Scholar 

  10. Diro GT, Rauscher SA, Giorgi F, Tompkins AM (2012) Sensitivity of seasonal climate and diurnal precipitation over Central America to land and sea surface schemes in RegCM4. Clim Res 52:31–48. https://doi.org/10.3354/cr01049

    Article  Google Scholar 

  11. Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2329. https://doi.org/10.1175/1520-0469(1991)048%3C2313:ASFRCC%3E2.0.CO;2

    Article  Google Scholar 

  12. Evans JP, Westra S (2012) Investigating the mechanisms of diurnal rainfall variability using a regional climate model. J Clim 25:7232–7247. https://doi.org/10.1175/JCLI-D-11-00616.1

    Article  Google Scholar 

  13. Gao X-J, Shi Y, GiorgiI F (2016) Comparison of convective parameterizations in RegCM4 experiments over China with CLM as the land surface model. Atmos Ocean Sci Lett 2834:1–9. https://doi.org/10.1080/16742834.2016.1172938

    Google Scholar 

  14. Giorgi F, Coppola E, Solmon F et al (2012) RegCM4: Model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29. https://doi.org/10.3354/cr01018

    Article  Google Scholar 

  15. Grell GA (1993) Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations. Mon. Weather Rev. 121:764–787. https://doi.org/10.1175/1520-0493(1993)121%3C0764:PEOAUB%3E2.0.CO;2

    Article  Google Scholar 

  16. Grell GA, Dudhia J, Stauffer DR (1994) A description of the Fifth-generation Penn State/NCAR Mesoscale Model (MM5). https://doi.org/10.5065/D60Z716B

  17. Hara M, Yoshikane T, Takahashi HG et al (2009) Assessment of the diurnal cycle of precipitation over the maritime continent simulated by a 20 km mesh GCM using TRMM PR data. J Meteorol Soc Jpn 87A:413–424. https://doi.org/10.2151/jmsj.87A.413

    Article  Google Scholar 

  18. Holtslag AAM, De Bruijn EIF, Pan H-L (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575. https://doi.org/10.1175/1520-0493(1990)118%3C1561:AHRAMT%3E2.0.CO;2

    Article  Google Scholar 

  19. Huang WR, Chan JCL (2012) Seasonal variation of diurnal and semidiurnal rainfall over Southeast China. Clim Dyn 39:1913–1927. https://doi.org/10.1007/s00382-011-1236-5

    Article  Google Scholar 

  20. Huang W-R, Chen K-C (2015) Trends in pre-summer frontal and diurnal rainfall activities during 1982–2012 over Taiwan and Southeast China: characteristics and possible causes. Int J Climatol 35:2608–2619. https://doi.org/10.1002/joc.4159

    Article  Google Scholar 

  21. Huang WR, Chan JCL, Au-Yeung AYM (2013) Regional climate simulations of summer diurnal rainfall variations over East Asia and Southeast China. Clim Dyn 40:1625–1642. https://doi.org/10.1007/s00382-012-1457-2

    Article  Google Scholar 

  22. Huang W-R, Chang Y-H, Hsu H-H et al (2016) Dynamical downscaling simulation and future projection of summer rainfall in Taiwan: contributions from different types of rain events. J Geophys Res Atmos 121:13,973 –973 13,988. https://doi.org/10.1002/2016JD025643

    Article  Google Scholar 

  23. Huffman GJ, Bolvin DT, Nelkin EJ et al (2007) The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55. https://doi.org/10.1175/JHM560.1

    Article  Google Scholar 

  24. Ichikawa H, Yasunari T (2006) Time-space characteristics of diurnal rainfall over Borneo and surrounding oceans as observed by TRMM-PR. J Clim 19:1238–1260. https://doi.org/10.1175/JCLI3714.1

    Article  Google Scholar 

  25. Ichikawa H, Yasunari T (2008) Intraseasonal variability in diurnal rainfall over New Guinea and the surrounding oceans during austral summer. J Clim 21:2852–2868. https://doi.org/10.1175/2007JCLI1784.1

    Article  Google Scholar 

  26. Ichikawa H, Masunaga H, Tsushima Y, Kanzawa H (2012) Reproducibility by climate models of cloud radiative forcing associated with tropical convection. J Clim 25:1247–1262. https://doi.org/10.1175/JCLI-D-11-00114.1

    Article  Google Scholar 

  27. Im ES, Eltahir EAB (2017) Simulation of the diurnal variation of rainfall over the western Maritime Continent using a regional climate model. Clim Dyn 51:1–16. https://doi.org/10.1007/s00382-017-3907-3

    Google Scholar 

  28. Im E-S, Ahn J-B, Remedio AR, Kwon W-T (2008) Sensitivity of the regional climate of East/Southeast Asia to convective parameterizations in the RegCM3 modelling system. Part 1: focus on the Korean peninsula. Int J Climatol 28:1861–1877. https://doi.org/10.1002/joc.1664

    Article  Google Scholar 

  29. Juneng L, Tangang F, Chung JX et al (2016) Sensitivity of Southeast Asia rainfall simulations to cumulus and air-sea flux parameterizations in RegCM4. Clim Res 69:59–77. https://doi.org/10.3354/cr01386

    Article  Google Scholar 

  30. Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181. https://doi.org/10.1175/1520-0450(2004)043%3C0170:TKCPAU%3E2.0.CO;2

    Article  Google Scholar 

  31. Kain JS, Fritsch JM (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci. 47:2784–2802. https://doi.org/10.1175/1520-0469(1990)047%3C2784:AODEPM%3E2.0.CO;2

    Article  Google Scholar 

  32. Kiehl JT, Hack JJ, Bonan GB et al (1996) Description of the NCAR Community Climate Model (CCSM3). NCAR Tech Note NCAR/TN-420 + STR. https://doi.org/10.5065/D6FF3Q99

  33. Kikuchi K, Wang B (2008) Diurnal precipitation regimes in the global tropics. J Clim 21:2680–2696. https://doi.org/10.1175/2007JCLI2051.1

    Article  Google Scholar 

  34. Li YB, Tam CY, Huang WR et al (2016) Evaluating the impacts of cumulus, land surface and ocean surface schemes on summertime rainfall simulations over East-to-southeast Asia and the western north pacific by RegCM4. Clim Dyn 46:2487–2505. https://doi.org/10.1007/s00382-015-2714-y

    Article  Google Scholar 

  35. Lui YS, Tam CY, Lau N-C (2018) Future changes in Asian summer monsoon precipitation extremes as inferred from 20-km AGCM simulations. Clim Dyn 0:1–17. https://doi.org/10.1007/s00382-018-4206-3

    Google Scholar 

  36. Mapes BE, Warner TT, Xu M (2003) Diurnal patterns of rainfall in Northwestern South America. Part III: diurnal gravity waves and nocturnal convection offshore. Mon Weather Rev 131:830–844. https://doi.org/10.1175/1520-0493(2003)131%3C0830:DPORIN%3E2.0.CO;2

    Article  Google Scholar 

  37. Masson S, Terray P, Madec G et al (2012) Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Clim Dyn 39:681–707. https://doi.org/10.1007/s00382-011-1247-2

    Article  Google Scholar 

  38. Mori S, Jun-Ichi H, Tauhid YI, et al (2004) Diurnal land–sea rainfall peak migration over Sumatera Island, Indonesian Maritime Continent, observed by TRMM satellite and intensive rawinsonde soundings. Mon Weather Rev 132:2021–2039. https://doi.org/10.1175/1520-0493(2004)132%3C2021:DLRPMO%3E2.0.CO;2

    Article  Google Scholar 

  39. Oleson KW, Lawrence DM, Gordon B et al (2010) Technical description of version 4.0 of the community land model (CLM). https://doi.org/10.5065/D6FB50WZ

  40. Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res Atmos 105:29579–29594. https://doi.org/10.1029/2000JD900415

    Article  Google Scholar 

  41. Ploshay JJ, Lau N-C (2010) Simulation of the diurnal cycle in tropical rainfall and circulation during boreal summer with a high-resolution GCM. Mon Weather Rev 138:3434–3453. https://doi.org/10.1175/2010MWR3291.1

    Article  Google Scholar 

  42. Ruppert JH (2016) Diurnal timescale feedbacks in the tropical cumulus regime. J Adv Model Earth Syst 8:1483–1500. https://doi.org/10.1002/2016MS000713

    Article  Google Scholar 

  43. Saito K, Keenan T, Holland G, Puri K (2001) numerical simulation of the diurnal evolution of tropical island convection over the maritime continent. Mon Weather Rev 129:378–400. https://doi.org/10.1175/1520-0493(2001)129%3C0378:NSOTDE%3E2.0.CO;2

    Article  Google Scholar 

  44. Satomura T (2000) Diurnal variation of precipitation over the indo-china peninsula-two-dimensional numerical simulation. J Meteorol Soc Jpn 78:461

    Article  Google Scholar 

  45. Shige S, Satomura T (2000) The gravity wave response in the troposphere around deep convection. J Meteorol Soc Jpn 78:789–801. https://doi.org/10.2151/jmsj1965.78.4_461

    Article  Google Scholar 

  46. Takahashi HG, Fujinami H, Yasunari T, Matsumoto J (2010) Diurnal rainfall pattern observed by Tropical Rainfall Measuring Mission Precipitation Radar (TRMM-PR) around the Indochina peninsula. J Geophys Res 115:D07109. https://doi.org/10.1029/2009JD012155

    Article  Google Scholar 

  47. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800. https://doi.org/10.1175/1520-0493(1989)117%3C1779:ACMFSF%3E2.0.CO;2

    Article  Google Scholar 

  48. Tiedtke M (1996) An extension of cloud-radiation parameterization in the ECMWF model: the representation of subgrid-scale variations of optical depth. Mon. Weather Rev. 124:745–750. https://doi.org/10.1175/1520-0493(1996)124%3C0745:AEOCRP%3E2.0.CO;2

    Article  Google Scholar 

  49. Wang B, Kim HJ, Kikuchi K, Kitoh A (2011) Diagnostic metrics for evaluation of annual and diurnal cycles. Clim Dyn 37:941–955. https://doi.org/10.1007/s00382-010-0877-0

    Article  Google Scholar 

  50. Wu P, Hamada J-I, Mori S, et al (2003) Diurnal variation of precipitable water over a mountainous area of Sumatra Island. J Appl Meteorol 42:1107–1115. https://doi.org/10.1175/1520-0450(2003)042%3C1107:DVOPWO%3E2.0.CO;2

    Article  Google Scholar 

  51. Yang GY, Slingo J (2001) The diurnal cycle in the tropics. Mon Weather Rev 129:784–801. https://doi.org/10.1175/1520-0493(2001)129%3C0784:TDCITT%3E2.0.CO;2

    Article  Google Scholar 

  52. Yin S, Chen D, Xie Y (2009) Diurnal variations of precipitation during the warm season over China. Int J Climatol 29:1154–1170. https://doi.org/10.1002/joc.1758

    Article  Google Scholar 

  53. Yokoi S, Mori S, Katsumata M, Geng B, Yasunaga K, Syamsudin F, Nurhayati, Yoneyama K (2017) Diurnal cycle of precipitation observed in the western coastal area of Sumatra Island: offshore preconditioning by gravity waves. Mon Wea Rev 145:3745–3761

    Article  Google Scholar 

  54. Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Clim 11:2628–2644. https://doi.org/10.1175/1520-0442(1998)011%3C2628:IOBAAF%3E2.0.CO;2

    Article  Google Scholar 

  55. Zhou L, Wang Y (2006) Tropical rainfall measuring mission observation and regional model study of precipitation diurnal cycle in the New Guinean region. J Geophys Res Atmos 111:1–18. https://doi.org/10.1029/2006JD007243

    Google Scholar 

  56. Zou L, Zhou T (2013) Improve the simulation of western North Pacific summer monsoon in RegCM3 by suppressing convection. Meteorol Atmos Phys 121:29–38. https://doi.org/10.1007/s00703-013-0255-7

    Article  Google Scholar 

  57. Zou L, Qian Y, Zhou T, Yang B (2014) Parameter tuning and calibration of RegCM3 with MIT-emanuel cumulus parameterization scheme over CORDEX East Asia domain. J Clim 27:7687–7701. https://doi.org/10.1175/JCLI-D-14-00229.1

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Eun-Soon Im for discussions and comments, especially on model-simulated diurnal rainfall over Maritime Continent. NCL at the Chinese University of Hong Kong is supported by the AXA Research Fund.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chi-Yung Tam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1733 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lui, Y.S., Tam, CY., Au-Yeung, Y.M. et al. Role of cumulus parameterization on the seasonal and diurnal precipitation over Southeast Asia in RegCM4. Clim Dyn 52, 6357–6375 (2019). https://doi.org/10.1007/s00382-018-4517-4

Download citation

Keywords

  • Regional Climate Model Version (RegCM4)
  • Diurnal Rainfall
  • Maritime Continent
  • Cumulus Scheme
  • Peak Rainfall