Disentangling the influence of local and remote anthropogenic aerosols on South Asian monsoon daily rainfall characteristics

Abstract

Wet and dry periods within the South Asian summer monsoon season can have acute societal impacts. Recent studies have identified changes in daily rainfall characteristics of the monsoon, but the underlying causes are poorly understood. In particular, although the dominant role of anthropogenic aerosols in shaping historical changes in seasonal-mean monsoon rainfall has been documented, their influence on daily-scale rainfall remains unconstrained. Using an ensemble of single-forcing climate simulations, we find that anthropogenic aerosols have a stronger influence on late-twentieth century changes in the frequency of wet events, dry events and rainless days, compared with other climate forcings. We also investigate the role of aerosol-cloud interactions (“indirect effects”) in the total aerosol response, and the contribution of aerosols emitted from South Asia versus from remote sources. Based on additional simulations with the GFDL-CM3 climate model, we find that the simulated aerosol response over South Asia is largely associated with aerosol-indirect effects. In addition, local aerosols suppress wet-event frequency and enhance dry-event frequency over eastern-central India, where increases in aerosol loading are the largest. Remote aerosols cause a north–south dipole pattern of change in mean rainfall over India and fewer rainless days over western India. However, the overall spatial response of South Asian rainfall characteristics to total aerosol forcing is substantially influenced by the combined non-linear climate response to local and remote aerosols. Together, our results suggest that understanding the influence of different aerosol emissions trajectories on the regional climate dynamics is critical for effective climate-risk management in this populated, vulnerable region.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    Vertical stability is calculated by computing the vertical difference in equivalent potential temperature (EPT) between two layers close to the surface (925 hPa minus 2 m), calculated using the expression suggested in Bolton (1980). By definition, EPT accounts for both changes in temperature and humidity as the moist parcel of air ascends and its vapor condenses, releasing latent heat. Warmer low-level temperatures and higher low-level humidity tend to increase instability.

References

  1. Ackerman AS et al (2004) The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature 432:1014. https://doi.org/10.1038/nature03174

    Article  Google Scholar 

  2. Annamalai H, Slingo JM (2001) Active / break cycles: diagnosis of the intraseasonal variability of the asian summer monsoon. Clim Dyn 18(1):85–102. https://doi.org/10.1007/s003820100161

    Article  Google Scholar 

  3. Arora VK et al (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett. https://doi.org/10.1029/2010GL046270

    Article  Google Scholar 

  4. Ashfaq M et al (2009) Suppression of south Asian summer monsoon precipitation in the 21st century. Geophys Res Lett 36(1):L01704. https://doi.org/10.1029/2008GL036500

    Article  Google Scholar 

  5. Ashfaq M et al (2017) Sources of errors in the simulation of south Asian summer monsoon in the CMIP5 GCMs. Clim Dyn 49(1–2):193–223. https://doi.org/10.1007/s00382-016-3337-7. Accessed 20 June 2017

  6. Bollasina MA, Ming Y, Ramaswamy V (2011) Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334(6055):502–505. http://www.sciencemag.org/content/334/6055/502.abstract

  7. Bollasina MA, Ming Y, Ramaswamy V (2013) Earlier onset of the Indian monsoon in the late twentieth century: the role of anthropogenic aerosols. Geophys Res Lett 40(14):3715–3720

    Article  Google Scholar 

  8. Bollasina MA et al. 2014. Contribution of local and remote anthropogenic aerosols to the twentieth century weakening of the South Asian Monsoon. Geophys Res Lett 41(2):680–687

    Article  Google Scholar 

  9. Bolton D (1980) The computation of equivalent potential temperature. Mon Weather Rev 108(7):1046–1053. https://doi.org/10.1175/1520-0493(1980)108%3C1046:TCOEPT%3E2.0.CO

    Article  Google Scholar 

  10. Boucher O et al.(2013) Clouds and aerosols. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  11. Chakraborty A, Nanjundiah RS, Srinivasan J (2014) Local and remote impacts of direct aerosol forcing on Asian monsoon. Int J Climatol 34(6):2108–2121. https://doi.org/10.1002/joc.3826

    Article  Google Scholar 

  12. Dash SK et al (2009) Changes in the characteristics of rain events in India. J Geophys Res 114(D10):D10109. https://doi.org/10.1029/2008JD010572

    Article  Google Scholar 

  13. Dave P, Bhushan M, Venkataraman C (2017) Aerosols cause intraseasonal short-term suppression of Indian monsoon rainfall. Sci Rep 7(1):17347. https://doi.org/10.1038/s41598-017-17599-1

    Article  Google Scholar 

  14. Day JA, Fung I, Risi C (2015) Coupling of South and East Asian monsoon precipitation in July–August. J Clim 28(11):4330–4356. https://doi.org/10.1175/JCLI-D-14-00393.1

    Article  Google Scholar 

  15. Deser C et al (2012) Communication of the role of natural variability in future North American climate. Nat Clim Change 2(11):775–779

    Article  Google Scholar 

  16. Diffenbaugh NS et al (2005) Fine-scale processes regulate the response of extreme events to global climate change. Proc Natl Acad Sci USA 102(44):8

    Article  Google Scholar 

  17. Diffenbaugh NS et al (2017) Quantifying the influence of global warming on unprecedented extreme climate events. Proc Natl Acad Sci 114(19):4881–4886. http://www.pnas.org/content/114/19/4881.abstract

  18. Donner LJ et al (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24(13):3484–3519. https://doi.org/10.1175/2011JCLI3955.1

    Article  Google Scholar 

  19. Ekman AML (2014) Do sophisticated parameterizations of aerosol-cloud interactions in CMIP5 models improve the representation of recent observed temperature trends? J Geophys Res Atmos 119:817–832

  20. Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the coupled model intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9:1937–1958. https://doi.org/10.5194/gmd-9-1937-2016

    Article  Google Scholar 

  21. Fan J et al (2012) Aerosol impacts on clouds and precipitation in eastern China: results from bin and bulk microphysics. J Geophys Res Atmos. https://doi.org/10.1029/2011JD016537

    Article  Google Scholar 

  22. Fan J et al (2013) Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proc Natl Acad Sci 110(48):E4581–E4590. https://doi.org/10.1073/pnas.1316830110

    Article  Google Scholar 

  23. Fan J et al (2016) Review of aerosol–cloud interactions: mechanisms, significance, and challenges. J Atmos Sci 73(11):4221–4252. https://doi.org/10.1175/JAS-D-16-0037.1

    Article  Google Scholar 

  24. Fischer EM, Knutti R (2015) Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat Clim Change 5(6):560–564

    Article  Google Scholar 

  25. Forster P et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Climate change 2007: The physical science basis. contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. In: MT and HLM, Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB (eds) Cambridge University Press, Cambridge

    Google Scholar 

  26. Gadgil S, Gadgil S (2006) The Indian monsoon, GDP and agriculture. http://www.epw.in/special-articles/indian-monsoon-gdp-and-agriculture.html

  27. Gadgil S, Kumar KR (2006) The Asian monsoon—agriculture and economy. In Wang B (ed) The Asian monsoon. Springer/Praxis Publishing Co., Berlin

    Google Scholar 

  28. Gent PR et al (2011) The community climate system model version 4. J Clim 24(19):4973–4991. https://doi.org/10.1175/2011JCLI4083.1

    Article  Google Scholar 

  29. Golaz JC et al (2011) Sensitivity of the aerosol indirect effect to subgrid variability in the cloud parameterization of the GFDL atmosphere general circulation model AM3. J Clim 24(13):3145–3160

    Article  Google Scholar 

  30. Golaz JC, Golaz JC, Levy, H (2013) Cloud tuning in a coupled climate model: Impact on 20th century warming. Geophys Res Lett 40(10):2246–2251

    Article  Google Scholar 

  31. Gornall J et al (2010) Implications of climate change for agricultural productivity in the early twenty-first century. Philos Trans R Soc Lond B Biol Sci 365(1554):2973–2989. http://www.ncbi.nlm.nih.gov/pubmed/20713397

  32. Granier C et al (2011) Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Clim Change 109(1):163. https://doi.org/10.1007/s10584-011-0154-1

    Article  Google Scholar 

  33. Guhathakurta P, Rajeevan M (2008) Trends in the rainfall pattern over India. Int J Climatol 28(11):1453–1469

    Article  Google Scholar 

  34. Guhathakurta P, Sreejith OP, Menon PA (2011) Impact of climate change on extreme rainfall events and flood risk in India. J Earth Syst Sci 120(3):359. https://doi.org/10.1007/s12040-011-0082-5

    Article  Google Scholar 

  35. Guo L, Turner AG, Highwood EJ (2015) Impacts of 20th century aerosol emissions on the South Asian monsoon in the CMIP5 models. Atmos Chem Phys 15(11):6367–6378. http://www.atmos-chem-phys.net/15/6367/2015/

  36. Guo L, Turner AG, Highwood EJ (2016) Local and remote impacts of aerosol species on Indian summer monsoon rainfall in a GCM. J Clim 29(19):6937–6955. https://doi.org/10.1175/JCLI-D-15-0728.1

    Article  Google Scholar 

  37. Ha K-J et al (2017) Linkages between the South and East Asian summer monsoons: a review and revisit. Clim Dyn. https://doi.org/10.1007/s00382-017-3773-z

    Article  Google Scholar 

  38. Hurley JV, Boos WR (2014) A global climatology of monsoon low-pressure systems. Q J R Meteorol Soc 141:1049–1064

    Article  Google Scholar 

  39. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, New York, NY, USA, p 582

    Google Scholar 

  40. Kay JE et al (2015) The community earth system model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Meteorol Soc 96(8):1333–1349. https://doi.org/10.1175/BAMS-D-13-00255.1

    Article  Google Scholar 

  41. Kitoh A (2017) The Asian monsoon and its future change in climate models: a review. J Meteorol Soc Jpn Ser II 95(1):7–33. https://doi.org/10.2151/jmsj.2017-002

    Article  Google Scholar 

  42. Koren I, Dagan G, Altaratz O (2014) From aerosol-limited to invigoration of warm convective clouds. Science 344(6188):1143–1147

    Article  Google Scholar 

  43. Krishnamurthy V, Shukla J (2008) Seasonal persistence and propagation of intraseasonal patterns over the Indian summer monsoon region. Clim Dyn 30:353–369

    Article  Google Scholar 

  44. Krishnan R et al (2016) Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world. Clim Dyn 47(3–4):1007–1027. https://doi.org/10.1007/s00382-015-2886-5

    Article  Google Scholar 

  45. Lamarque J-F et al (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10(15):7017–7039

    Article  Google Scholar 

  46. Lau WKM, Kim K-M (2010) Fingerprinting the impacts of aerosols on long-term trends of the Indian summer monsoon regional rainfall. Geophys Res Lett 37(16):L16705. https://doi.org/10.1029/2010GL043255

    Article  Google Scholar 

  47. Levy H et al (2013) The roles of aerosol direct and indirect effects in past and future climate change. J Geophys Res Atmos 118(10):4521–4532. https://doi.org/10.1002/jgrd.50192

    Article  Google Scholar 

  48. Li X et al (2015) Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J Clim 28(10):4107–4125. https://doi.org/10.1175/JCLI-D-14-00559.1

    Article  Google Scholar 

  49. Li Z et al (2016) Aerosol and monsoon climate interactions over Asia. Rev Geophys 54(4):866–929. https://doi.org/10.1002/2015RG000500

    Article  Google Scholar 

  50. Lin L et al (2016) Sensitivity of precipitation extremes to radiative forcing of greenhouse gases and aerosols. Geophys Res Lett 43(18):9860–9868. https://doi.org/10.1002/2016GL070869

    Article  Google Scholar 

  51. Lin L et al (2018) Changes in extreme rainfall over India and China attributed to regional aerosol-cloud interaction during the late 20th century rapid industrialization. Geophys Res Lett. https://doi.org/10.1029/2018GL078308

    Article  Google Scholar 

  52. Lu Z, Zhang Q, Streets DG (2011) Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmos Chem Phys 11(18):9839–9864. https://www.atmos-chem-phys.net/11/9839/2011/

  53. Ma X, von Salzen K, Cole J (2010) Constraints on interactions between aerosols and clouds on a global scale from a combination of MODIS-CERES satellite data and climate simulations. Atmos Chem Phys 10(20):9851–9861. https://www.atmos-chem-phys.net/10/9851/2010/

  54. Mandke SK et al (2007) Simulated changes in active/break spells during the Indian summer monsoon due to enhanced CO2 concentrations: assessment from selected coupled atmosphere–ocean global climate models. Int J Climatol 27(7):837–859. https://doi.org/10.1002/joc.1440

    Article  Google Scholar 

  55. Min S-K et al (2011) Human contribution to more-intense precipitation extremes. Nature 470(7334):378–381

    Article  Google Scholar 

  56. Ming Y et al (2006) A new parameterization of cloud droplet activation applicable to general circulation models. J Atmos Sci 63(4):1348–1356. https://doi.org/10.1175/JAS3686.1

    Article  Google Scholar 

  57. Ming Y et al (2007) Modeling the Interactions between aerosols and liquid water clouds with a self-consistent cloud scheme in a general circulation model. J Atmos Sci 64(4):1189–1209. https://doi.org/10.1175/JAS3874.1

    Article  Google Scholar 

  58. Mondal A, Mujumdar PP (2015) Regional hydrological impacts of climate change: implications for water management in India. Proc IAHS 366:34–43. https://doi.org/10.5194/piahs-366-34-2015

    Article  Google Scholar 

  59. Moss RH et al (2010) The next generation of scenarios for climate change research and assessment. Nature, 463(7282):747–756. https://doi.org/10.1038/nature08823

    Article  Google Scholar 

  60. Ning L, Liu J, Sun W (2017) Influences of volcano eruptions on Asian summer monsoon over the last 110 years. Sci Rep 7:3–8. https://doi.org/10.1038/srep42626

    Article  Google Scholar 

  61. Pai DS et al (2015) Analysis of the daily rainfall events over India using a new long period (1901–2010) high resolution (0.25° × 0.25°) gridded rainfall data set. Clim Dyn 45(3–4):755–776. https://doi.org/10.1007/s00382-014-2307-1

    Article  Google Scholar 

  62. Persad GG et al (2017) Competing atmospheric and surface-driven impacts of absorbing aerosols on the east asian summertime climate. J Clim 30(22):8929–8949. https://doi.org/10.1175/JCLI-D-16-0860.1

    Article  Google Scholar 

  63. Preethi B et al (2017) Variability and teleconnections of South and East Asian summer monsoons in present and future projections of CMIP5 climate models. Asia Pac J Atmos Sci 53(2):305–325. https://doi.org/10.1007/s13143-017-0034-3

    Article  Google Scholar 

  64. Pu B, Ginoux P (2016) The impact of the Pacific Decadal Oscillation on springtime dust activity in Syria. Atmos Chem Phys 16(21):13431–13448

    Article  Google Scholar 

  65. Rajeevan M, Gadgil S, Bhate J (2010) Active and break spells of the Indian summer monsoon. J Earth Syst Sci 119(3):229–247. https://doi.org/10.1007/s12040-010-0019-4

    Article  Google Scholar 

  66. Ramanathan V et al (2001) Aerosols, climate, and the hydrological cycle. Science 294(5549):2119–2124. http://www.sciencemag.org/content/294/5549/2119.abstract

  67. Ramanathan V et al (2005) Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci USA 102(15):5326–5333. http://www.pnas.org/content/102/15/5326.abstract

  68. Rosenfeld D et al (2008) Flood or drought: how do aerosols affect precipitation? Science 321(5894):1309LP–1313. http://science.sciencemag.org/content/321/5894/1309.abstract

  69. Rotstayn LD et al (2012) Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations. Atmos Chem Phys 12(14):6377–6404. https://www.atmos-chem-phys.net/12/6377/2012/

  70. Rotstayn LD et al (2014) Declining aerosols in CMIP5 projections: effects on atmospheric temperature structure and midlatitude jets. J Clim 27(18):6960–6977

    Article  Google Scholar 

  71. Rotstayn LD, Collier MA, Luo JJ (2015) Effects of declining aerosols on projections of zonally averaged tropical precipitation. Environ Res Lett 10(4):044018

    Article  Google Scholar 

  72. Roxy MK et al (2017) A threefold rise in widespread extreme rain events over central India. Nat Commun 8:708. https://doi.org/10.1038/s41467-017-00744-9

    Article  Google Scholar 

  73. Salinger MJ, Griffiths GM (2001) Trends in New Zealand daily temperature and rainfall extremes. Int J Climatol 21(12):1437–1452. https://doi.org/10.1002/joc.694

    Article  Google Scholar 

  74. Salzmann M, Cherian R (2015) On the enhancement of the Indian summer monsoon drying by Pacific multidecadal variability during the latter half of the twentieth century. J Geophys Res Atmos 120:9103–9118

    Article  Google Scholar 

  75. Salzmann M et al (2010) Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests. Atmos Chem Phys 10(16):8037–8064

    Article  Google Scholar 

  76. Salzmann M, Weser H, Cherian R (2014) Robust response of Asian summer monsoon to anthropogenic aerosols in CMIP5 models. J Geophys Res Atmos 119(19):11,321–11,337. https://doi.org/10.1002/2014JD021783

    Article  Google Scholar 

  77. Sharmila S et al (2015) Future projection of Indian summer monsoon variability under climate change scenario: an assessment from CMIP5 climate models. Glob Planet Change 124:62–78

    Article  Google Scholar 

  78. Sillmann J et al (2013) Aerosol effect on climate extremes in Europe under different future scenarios. Geophys Res Lett 40(10):2290–2295

    Article  Google Scholar 

  79. Singh D et al (2014) Observed changes in extreme wet and dry spells during the South Asian summer monsoon season. Nat Clim Change 4(April):1–6

    Google Scholar 

  80. Smith SJ et al (2011) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos. Chem. Phys. 11(3):1101–1116. https://www.atmos-chem-phys.net/11/1101/2011/

  81. Sperber KR et al (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41(9–10):2711–2744. https://doi.org/10.1007/s00382-012-1607-6

    Article  Google Scholar 

  82. Stanberry L (2013) Permutation test. In: W. Dubitzky et al (eds) Encyclopedia of systems biology. Springer, New York, pp 1678. https://doi.org/10.1007/978-1-4419-9863-7_1186

    Google Scholar 

  83. Stowasser M, Annamalai H, Hafner J (2009) Response of the south Asian summer monsoon to global warming: mean and synoptic systems*. J Clim 22(4):1014–1036. https://doi.org/10.1175/2008JCLI2218.1

    Article  Google Scholar 

  84. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  85. Turner AG, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Change 2(August):587–595. https://doi.org/10.1038/nclimate1495

    Article  Google Scholar 

  86. van Vuuren DP et al (2011) The representative concentration pathways: an overview. Clim Change 109(1):5. https://doi.org/10.1007/s10584-011-0148-z

    Article  Google Scholar 

  87. Vinnarasi R, Dhanya CT (2016) Changing characteristics of extreme wet and dry spells of Indian monsoon rainfall. J Geophys Res Atmos 121(5):2146–2160

    Article  Google Scholar 

  88. Vinoj V et al (2014) Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nat Geosci 7(4):308–313

    Article  Google Scholar 

  89. Vuuren DP et al (2011) A special issue on the RCPs. Clim Change 109(1):1–4

    Article  Google Scholar 

  90. Wang C (2015) Anthropogenic aerosols and the distribution of past large-scale precipitation change. Geophys Res Lett 42(24):10876–10884

    Google Scholar 

  91. Wang C et al (2009) Impact of anthropogenic aerosols on Indian summer monsoon. Geophys Res Lett 36(21):L21704. https://doi.org/10.1029/2009GL040114

    Article  Google Scholar 

  92. Wilcox LJ, Highwood EJ, Dunstone NJ (2013) The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environ Res Lett 8(2):024033

    Article  Google Scholar 

  93. Xue H, Feingold G (2006) Large-eddy simulations of trade wind cumuli: investigation of aerosol indirect effects. J Atmos Sci 63(6):1605–1622. http://journals.ametsoc.org/doi/abs/10.1175/JAS3706.1

  94. Yatagai A et al (2012) APHRODITE: constructing a long-term daily gridded precipitation dataset for asia based on a dense network of rain gauges. Bull Am Meteorol Soc 93(9):1401–1415. https://doi.org/10.1175/BAMS-D-11-00122.1

    Article  Google Scholar 

  95. Zhang L, Li T (2016) Relative roles of anthropogenic aerosols and greenhouse gases in land and oceanic monsoon changes during past 156 years in CMIP5 models. Geophys Res Lett 43:5295–5301

    Article  Google Scholar 

  96. Zhou C, Penner JE (2017) Why do general circulation models overestimate the aerosol cloud lifetime effect? A case study comparing CAM5 and a CRM. Atmos Chem Phys 17(1):21–29

    Article  Google Scholar 

Download references

Acknowledgements

This study is partially supported by the National Science Foundation Grant AGS16-07348 and the Lamont-Doherty Postdoctoral Fellowship. Massimo A. Bollasina was partially supported by the UK-China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund. We would like to thank Alexandra Karambelas for helpful discussions. We also thank NOAA Geophysical Fluid Dynamics Laboratory for providing access to the data used in this study. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output publicly available. For CMIP, the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Output for CanESM2 and CSIRO was accessed from https://esgf-node.llnl.gov/projects/esgf-llnl/ and for CCSM4 was accessed from https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.cmip5.output.html. We also acknowledge the use of the NCAR Command Language Version 6.3.0 for the analysis and production of maps (Boulder, Colorado: UCAR/NCAR/CISL/TDD. https://doi.org/10.5065/D6WD3XH5). Any data or code used in this manuscript can be made available by contacting the corresponding author (deepti.singh@wsu.edu).

Author information

Affiliations

Authors

Contributions

DS, MB, and NSD conceived the study. All authors designed the analysis. MB provided the data. DS performed the analysis and all authors wrote the manuscript.

Corresponding author

Correspondence to Deepti Singh.

Ethics declarations

Conflict of interest

All authors declare no competing financial interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 11879 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Bollasina, M., Ting, M. et al. Disentangling the influence of local and remote anthropogenic aerosols on South Asian monsoon daily rainfall characteristics. Clim Dyn 52, 6301–6320 (2019). https://doi.org/10.1007/s00382-018-4512-9

Download citation

Keywords

  • South Asian Monsoon
  • Anthropogenic aerosols
  • Local and remote aerosols
  • Daily-scale precipitation