Abramowitz G, Leuning R, Clark M, Pitman A (2008) Evaluating the performance of land surface models. J Clim 21(21):5468–5481. https://doi.org/10.1175/2008JCLI2378.1
Article
Google Scholar
Alexander L (2011) Extreme heat rooted in dry soils. Nat Geosci 4(1):12–13. https://doi.org/10.1038/ngeo1045
Article
Google Scholar
Arblaster JM, Alexander LV (2012) The impact of the El Nio–Southern Oscillation on maximum temperature extremes. Geophys Res Lett. https://doi.org/10.1029/2012GL053409
Google Scholar
Arblaster JM, Lim EP, Hendon HH, Trewin BC, Wheeler MC, Liu G, Braganza K (2014) Understanding Australia’s Hottest September on record. Spec Suppl Bull Am Meteorol Soc 95(9):37–41
Google Scholar
Ashcroft L, Karoly DJ, Gergis J (2014) Southeastern Australian climate variability 1860–2009: a multivariate analysis. Int J Climatol 34(6):1928–1944. https://doi.org/10.1002/joc.3812
Article
Google Scholar
Barras V, Simmonds I (2009) Observation and modeling of stable water isotopes as diagnostics of rainfall dynamics over southeastern Australia. J Geophys Res Atmos. https://doi.org/10.1029/2009JD012132
Google Scholar
Best M, Abramowitz G, Johnson H, Pitman A, Balsamo G, Boone A, Cuntz M, Decharme B, Dirmeyer P, Dong J, Ek M, Guo Z, Haverd V, van den Hurk B, Nearing G, Pak B, Peters-Lidard C, Santanello JAJ, Stevens L, Vuichard N (2015) The plumbing of land surface models: benchmarking model performance. J Hydrometeorol 16(June 2015):1425–1442. https://doi.org/10.1175/JHM-D-14-0158.1
Article
Google Scholar
Bi D, Dix M, Marsland SJ, Farrell SO, Rashid HA, Uotila P, Hirst AC, Kowalczyk E, Golebiewski M, Sullivan A, Yan H, Hannah N, Franklin C, Sun Z, Vohralik P, Watterson I, Zhou X, Fiedler R, Collier M, Ma Y, Noonan J, Stevens L, Uhe P, Zhu H, Griffies SM, Hill R, Harris C, Puri K (2013) The ACCESS coupled model: description, control climate and evaluation. Aust Meteorol Oceanogr J 63:41–64
Article
Google Scholar
Bieli M, Pfahl S, Wernli H (2015) A lagrangian investigation of hot and cold temperature extremes in Europe. Q J R Meteorol Soc 141(686):98–108. https://doi.org/10.1002/qj.2339
Article
Google Scholar
Boschat G, Pezza A, Simmonds I, Perkins S, Cowan T, Purich A (2014) Large scale and sub-regional connections in the lead up to summer heat wave and extreme rainfall events in eastern Australia. Clim Dyn 44:1823–1840. https://doi.org/10.1007/s00382-014-2214-5
Article
Google Scholar
Boschat G, Simmonds I, Purich A, Cowan T, Pezza AB (2016) On the use of composite analyses to form physical hypotheses: an example from heat wave—SST associations. Nat Publ Group (January). https://doi.org/10.1038/srep29599
Google Scholar
Bureau of Meteorology (2016a) Annual Climate Report 2015. Bureau of Meteorology, Melbourne, p 31
Google Scholar
Bureau of Meteorology (2016b) Special Climate Statement 53 widespread record December temperatures in southeast Australia. Bureau of Meteorology, Melbourne
Google Scholar
Chambers CRS, Chambers CRS, Brassington GB, Simmonds I, Walsh K (2014) Precipitation changes due to the introduction of eddy-resolved sea surface temperatures into simulations of the “Pasha Bulker” Australian east coast low of June 2007. Meteorol Atmos Phys 125:1–15. https://doi.org/10.1007/s00703-014-0318-4
Article
Google Scholar
Coates L (1996) An overview of fatalities from some natural hazards in Australia. In Proceedings of conference on natural disaster reduction (October), pp 49–54
Coates L, Haynes K, O’Brien J, McAneney J, De Oliveira FD (2014) Exploring 167 years of vulnerability: an examination of extreme heat events in Australia 1844–2010. Environ Sci Policy 42:33–44. https://doi.org/10.1016/j.envsci.2014.05.003
Article
Google Scholar
Colombo AF, Etkin D, Karney BW (1999) Climate variability and the frequency of extreme temperature events for nine sites across Canada: implications for power usage. J Clim 12(8 PART 2):2490–2502. https://doi.org/10.1175/1520-0442(1999)012h2490:CVATFOi2.0.CO;2
Article
Google Scholar
Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Br¨onnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137(654):1–28. https://doi.org/10.1002/qj.776
Article
Google Scholar
Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Change (March). https://doi.org/10.1038/nclimate1452
Google Scholar
Cowan T, Purich A, Perkins S, Pezza A, Boschat G, Sadler K (2014) More frequent, longer and hotter heat waves for Australia in the 21st century. J Clim 27:5851–5871. https://doi.org/10.1175/JCLI-D-14-00092.1
Article
Google Scholar
CRED (2015) The Human costs of weather related disasters. Centre for Research on the Epidemiology of Disasters—The United Nations Office for Diaster Risk Reduction, p 37. https://doi.org/10.1017/CBO9781107415324.004. http://arxiv.org/abs/1011.1669v3
Davies T, Cullen MJP, Malcolm AJ, Mawson MH, Staniforth A, White AA, Wood N (2005) A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Q J R Meteorol Soc 131(608):1759–1782. https://doi.org/10.1256/qj.04.101
Article
Google Scholar
Decker WL (1967) Periods with Temperatures Critical to Agriculture. No. 864 in North central regional research publications, University of Missouri, Agricultural Experiment Station
Deser C, Knutti R, Solomon S, Phillips AS (2012) Communication of the role of natural variability in future North American climate. Nat Clim Change 2(11):775–779. https://doi.org/10.1038/nclimate1562
Article
Google Scholar
Farooq M, Bramley H, Palta JA, Kadambot HM, Farooq M, Bramley H, Palta JA, Siddique KHM (2016) Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci 2689(April):491–507. https://doi.org/10.1080/07352689.2011.615687
Google Scholar
Frich P, Alexander LV, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19(3):193–212
Article
Google Scholar
Gong D, Wang S (1999) Definition of Antarctic Oscillation Index. Geophys Res Lett 26(4):459–462. https://doi.org/10.1029/1999GL900003
Article
Google Scholar
Green D, Pitman A, Barnett A, Kaldor J, Doherty P, Stanley F (2017) Advancing Australia’s role in climate change and health research. Nat Clim Change 7(2):103–106. https://doi.org/10.1038/nclimate3182
Article
Google Scholar
Harpaz T, Ziv B, Saaroni H, Beja E (2014) Extreme summer temperatures in the East Mediterranean-dynamical analysis. Int J Climatol 34(3):849–862. https://doi.org/10.1002/joc.3727
Article
Google Scholar
Hendon HH, Thompson DWJ, Wheeler MC (2007) Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode. J Clim 20:2452–2467. https://doi.org/10.1175/JCLI4134.1
Article
Google Scholar
Herold N, Kala J, Alexander LV (2016) The influence of soil moisture deficits on australian heatwaves. Environ Res Lett 11(6):1–8. https://doi.org/10.1088/1748-9326/11/6/064003
Article
Google Scholar
Hirschi M, Seneviratne SI, Alexandrov V, Boberg F, Boroneant C, Christensen OB, Formayer H, Orlowsky B, Stepanek P (2010) Observational evidence for soilmoisture impact on hot extremes in southeastern Europe. Nat Geosci 4(1):17–21. https://doi.org/10.1038/ngeo1032
Article
Google Scholar
IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781107415324
Google Scholar
Kala J, Evans JP, Pitman AJ (2015) Influence of antecedent soil moisture conditions on the synoptic meteorology of the black saturday bushfire event in southeast Australia. Q J R Meteorol Soc 141:3118–3129. https://doi.org/10.1002/qj.2596
Article
Google Scholar
Karoly DJ (1989) Southern Hemisphere circulation features associated with El Niño-Southern Oscillation events. J Clim 2(11):1239–1252. https://doi.org/10.1175/1520-442(1989)002h1239:SHCFAWi2.0.CO;2
Article
Google Scholar
King AD, Donat MG, Alexander LV, Karoly DJ (2015) The ENSO-Australian rainfall teleconnection in reanalysis and CMIP5. Clim Dyn 44(9–10):2623–2635. https://doi.org/10.1007/s00382-014-2159-8
Article
Google Scholar
Klingaman NP, Woolnough SJ, Syktus J (2013) On the drivers of inter-annual and decadal rainfall variability in Queensland, Australia. Int J Climatol 33(10):2413–2430. https://doi.org/10.1002/joc.3593
Article
Google Scholar
Kowalczyk EA, Stevens L, Law RM, Dix M, Wang YP, Harman IN, Haynes K, Srbinovsky J, Pak B, Ziehn T (2013) The land surface model component of ACCESS: description and impact on the simulated surface climatology. Aust Meteorol Oceanogr J 63:65–82
Article
Google Scholar
L’Heureux ML, Thompson DWJ (2006) Observed relationships between the El-Niño–Southern oscillation and the extratropical zonal-mean circulation. J Clim 19(1):276–287. https://doi.org/10.1175/JCLI3617.1
Article
Google Scholar
Lim EP, Hendon HH (2015) Understanding the contrast of Australian springtime rainfall of 1997 and 2002 in the frame of two flavors of El Niño. J Clim 28(7):2804–2822. https://doi.org/10.1175/JCLI-D-14-00582.1
Article
Google Scholar
Lorenz R, Jaeger EB, Seneviratne SI (2010) Persistence of heat waves and its link to soil moisture memory. Geophys Res Lett 37(9):1–5. https://doi.org/10.1029/2010GL042764
Article
Google Scholar
Loughran TF, Perkins-Kirkpatrick SE, Alexander LV (2017a) Understanding the spatio-temporal influence of climate variability on Australian heatwaves. Int J Climatol 37(10):3963–3975. https://doi.org/10.1002/joc.4971
Article
Google Scholar
Loughran TF, Perkins-Kirkpatrick SE, Alexander LV, Pitman AJ (2017b) No significant difference between Australian heatwave impacts of Modoki and Eastern Pacific El Niño. Geophys Res Lett 44:5150–5157. https://doi.org/10.1002/2017GL073231
Article
Google Scholar
Marshall AG, Hudson D, Wheeler MC, Hendon HH, Alves O (2012) Simulation and prediction of the Southern annular mode and its influence on Australian intra-seasonal climate in POAMA. Clim Dyn 38(11–12):2483–2502. https://doi.org/10.1007/s00382-011-1140-z
Article
Google Scholar
Marshall AG, Hudson D, Wheeler MC, Alves O, Hendon HH, Pook MJ, Risbey JS (2013) Intra-seasonal drivers of extreme heat over Australia in observations and POAMA-2. Clim Dyn 43:1915–1937. https://doi.org/10.1007/s00382-013-2016-1
Article
Google Scholar
McBride JL, Mills GA, Wain AG (2009) The Meteorology of Australian heatwaves. Modelling and understanding high impact weather: extended abstracts of the third CAWCR modelling workshop, pp 91–94
McEvoy D, Ahmed I, Mullett J (2012) The impact of the 2009 heat wave on Melbourne’s critical infrastructure. Local Environ 17(8):783–796. https://doi.org/10.1080/13549839.2012.678320
Article
Google Scholar
Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305(5686):994–997. https://doi.org/10.1126/science.1098704
Article
Google Scholar
Miralles DG, Van Den Berg MJ, Teuling AJ, De Jeu RAM (2012) Soil moisture temperature coupling: a multiscale observational analysis. Geophys Res Lett 39(21):2–7. https://doi.org/10.1029/2012GL053703
Article
Google Scholar
Miralles DG, Teuling AJ, Heerwaarden CCV (2014) Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat Geosci 7(5):345–349. https://doi.org/10.1038/ngeo2141
Article
Google Scholar
Nairn J, Fawcett R, Ray D (2009) Defining and predicting excessive heat events, a national system. CAWCR Tech Rep 60:83–86
Google Scholar
Nicholls N, Drosdowsky W, Lavery B (1997) Australian rainfall variability and change. Bur Meteorol 52(3):66–72. https://doi.org/10.1002/j.1477-8696.1997.tb06274.x
Google Scholar
Nicholls N, Baek HJ, Gosai A, Chambers LE, Choi Y, Collins D, Della-Marta PM, Griffiths GM, Haylock MR, Iga N, Lata R, Maitrepierre L, Manton MJ, Nakamigawa H, Ouprasitwong N, Solofa D, Tahani L, Thuy DT, Tibig L, Trewin B, Vediapan K, Zhai P (2005) The El Niñno-Southern Oscillation and daily temperature extremes in east Asia and the west Pacific. Geophys Res Lett 32(16):1–4. https://doi.org/10.1029/2005GL022621
Article
Google Scholar
Noone D, Simmonds I (1999) A three-dimensional spherical trajectory algorithm. Res Activities Atmos Ocean Model 28(942):3.26–3.27
Google Scholar
Parker TJ, Berry GJ, Reeder MJ (2013) The influence of tropical cyclones on heat waves in Southeastern Australia. Geophys Res Lett 40(23):6264–6270. https://doi.org/10.1002/2013GL058257
Article
Google Scholar
Parker TJ, Berry GJ, Reeder MJ (2014a) The structure and evolution of heat waves in Southeastern Australia. J Clim 27:5768–5785
Article
Google Scholar
Parker TJ, Berry GJ, Reeder MJ, Nicholls N (2014b) Modes of climate variability and heat waves in Victoria, southeastern Australia. Geophys Res Lett 41(19):6926–6934. https://doi.org/10.1002/2014GL061736
Article
Google Scholar
Pepler AS, Alexander LV, Evans JP, Sherwood SC (2016) The influence of local sea surface temperatures on Australian east coast cyclones. J Geophys Res 121:13352–13363. https://doi.org/10.1002/2016JD025495
Google Scholar
Perkins SE (2015) A review on the scientific understanding of heatwaves—their measurement, driving mechanisms, and changes at the global scale. Atmos Res 164:242–267. https://doi.org/10.1016/j.atmosres.2015.05.014
Article
Google Scholar
Perkins SE, Alexander LV (2013) On the measurement of heat waves. J Clim 26(13):4500–4517. https://doi.org/10.1175/JCLI-D-12-00383.1
Article
Google Scholar
Perkins SE, Alexander LV, Nairn JR (2012) Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys Res Lett. https://doi.org/10.1029/2012GL053361
Google Scholar
Perkins SE, Argüeso D, White CJ (2015) Relationships between climate variability, soil moisture, and Australian heatwaves. J Geophys Res Atmos 120(16):8144–8164. https://doi.org/10.1002/2015JD023592
Article
Google Scholar
Pezza AB, Rensch P, Cai W (2012) Severe heat waves in Southern Australia: synoptic climatology and large scale connections. Clim Dyn 38(1–2):209–224. https://doi.org/10.1007/s00382-011-1016-2
Article
Google Scholar
Quinting JF, Reeder MJ (2017) Southeastern Australian heat waves from a trajectory viewpoint. Mon Weather Rev 145(10):4109–4125. https://doi.org/10.1175/MWR-D-17-0165.1
Article
Google Scholar
Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the southern oscillation/El Niño. Mon Weather Rev 110:354–384
Article
Google Scholar
Rayner NA (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. https://doi.org/10.1029/2002JD002670
Article
Google Scholar
Risbey JS, Pook MJ, McIntosh PC, Wheeler MC, Hendon HH (2009) On the remote drivers of rainfall variability in Australia. Mon Weather Rev 137(10):3233–3253. https://doi.org/10.1175/2009MWR2861.1
Article
Google Scholar
Seager R, Harnik N, Kushnir Y, Robinson WA, Miller JA (2003) Mechanisms of hemispherically symetric climate variability. J Clim 16(18):2960–2978. https://doi.org/10.1175/1520-0442(2003)016h2960:MOHSCVi2.0.CO;2
Article
Google Scholar
Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci Rev 99(3–4):125–161. https://doi.org/10.1016/j.earscirev.2010.02.004
Article
Google Scholar
Trenberth KE (1976) Spatial and temporal variations of the Southern Oscillation. Q J R Meteorol Soc 102(433):639–653. https://doi.org/10.1002/qj.49710243310
Article
Google Scholar
Victorian Department of Health (2009) January 2009 heatwave in Victoria: an assessment of health impacts (January). Victorian Government Deparment of Human Services, Melbourne, Victoria, p 24. https://www2.health.vic.gov.au/Api/downloadmedia/%7B959CCD3C-8285-4938-872E-62E15AA62C62%7D
Wang YP, Kowalczyk E, Leuning R, Abramowitz G, Raupach MR, Pak B, Van Gorsel E, Luhar A (2011) Diagnosing errors in a land surface model (CABLE) in the time and frequency domains. J Geophys Res Biogeosci 116(1):1–19. https://doi.org/10.1029/2010JG001385
Google Scholar
Welbergen JA, Klose SM, Markus N, Eby P (2008) Climate change and the effects of temperature extremes on Australian flying-foxes. Proc R Soc B Biol Sci 275(1633):419–425. https://doi.org/10.1098/rspb.2007.1385
Article
Google Scholar
World Meteorological Organisation (2016) Provisional WMO statement on the status of the global climate in 2016 (1189). World Meteorological Organisation, Geneva, Switzerland. ISBN 97892631111890. https://public.wmo.int/en/media/press-release/provisional-wmo-statement-status-of-global-climate-2016
Zander KK, Botzen WJW, Oppermann E, Kjellstrom T, Garnett ST (2015) Heat stress causes substantial labour productivity loss in Australia. Nat Clim Change 5(May):1–6. https://doi.org/10.1038/nclimate2623
Google Scholar
Zhang H, Pak B, Wang YP, Zhou X, Zhang Y, Zhang L (2013) Evaluating surface water cycle simulated by the Australian community land surface model (CABLE) across different spatial and temporal domains. J Hydrometeorol 14(4):1119–1138. https://doi.org/10.1175/JHM-D-12-0123.1
Article
Google Scholar