Separate tree-ring reconstructions of spring and summer moisture in the northern and southern Great Plains

Abstract

The two most severe droughts to impact the Great Plains in the twentieth century, the 1930s Dust Bowl and 1950s Drought, were the result of multiyear moisture deficits during the spring and especially the summer season. Tree-ring reconstructions of the Palmer Drought Severity Index indicate similar droughts in magnitude have occurred in previous centuries, but these reconstructions do not capture the potential distinct seasonal drought characteristics like those of the 1930s and 1950s. Separate tree-ring reconstructions of the spring and summer Z-index based on earlywood, latewood, and adjusted latewood width chronologies have been developed for two regions in the northern and southern Great Plains of the US. The reconstructions extend from 1651 to 1990 and 1698–1990, respectively, with instrumental data added from 1991 to 2017. The four reconstructions explain from 39 to 56% of the variance during the 1945–1990 calibration interval and are significantly correlated with independent moisture balance observations during the 1900–1944 validation period. The reconstructions reproduce similar seasonal sea-surface temperature and 500 mb geopotential height spatial correlation patterns detected with the instrumental data. The 1930s is estimated to have been the most extreme decadal summer drought to impact the two regions concurrently in the last few centuries. On average, spring moisture deficits were more severe during the multidecadal droughts of the mid- to late-nineteenth century, but the timing of drought onset and termination differed between the study regions. In the recent two decades the spring moisture balances for the two study regions have largely been opposite, and this has been one of the most extreme periods of anti-phasing in the last few centuries. Seasonal moisture reversals are not randomly distributed in time based on the reconstructed estimates and are related to sea-surface temperature anomalies in the tropical Pacific and to mid-tropospheric circulation changes over the North Pacific–North American sector during May and June.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Akaike H (1974) A new look at statistical model identification. IEEE Trans Autom Control 19:716–723. https://doi.org/10.1109/TAC.1974.1100705

    Article  Google Scholar 

  2. Barandiaran D, Wang SY, Hilburn K (2013) Observed trends in the Great Plains low-level jet and associated precipitation changes in relation to recent droughts. Geophys Res Lett 40:6247–6251. https://doi.org/10.1002/2013GL058296

    Article  Google Scholar 

  3. Bunkers MJ, Miller JR, DeGaetano AT (1996) An examination of El Niño-La Niña-related precipitation and temperature anomalies across the northern plains. J Clim 9:147–160. https://doi.org/10.1175/1520-0442(1996)009%3C0147:AEOENN%3E2.0.CO;2

    Article  Google Scholar 

  4. Burnette DJ, Stahle DW (2010) Program DendroTools. Tree Ring Lab, University of Arkansas, Fayetteville

    Google Scholar 

  5. Burnette DJ, Stahle DW (2013) Historical perspective on the dust bowl drought in the central United States. Clim Change 116:479–494. https://doi.org/10.1007/s10584-012-0525-2

    Article  Google Scholar 

  6. Burns JN, Acuna-Soto R, Stahle DW (2014) Drought and epidemic typhus, central Mexico, 1655–1918. Emerg Infect Dis 20:442–447. https://doi.org/10.3201/eid2003.131366

    Article  Google Scholar 

  7. Cleaveland MK, Duvick DN (1992) Iowa climate reconstructed from tree rings, 1640–1982. Water Resour Res 28:2607–2615. https://doi.org/10.1029/92WR01562

    Article  Google Scholar 

  8. Cleaveland MK, Stahle DW (1989) Tree ring analysis of surplus and deficit runoff in the White River, Arkansas. Water Resour Res 25:1391–1401. https://doi.org/10.1029/WR025i006p01391

    Article  Google Scholar 

  9. Cleaveland MK, Stahle DW, Therrell MD et al (2003) Tree-ring reconstructed winter precipitation and tropical teleconnections in Durango. Mexico Clim Change 59:369–388. https://doi.org/10.1023/A:1024835630188

    Article  Google Scholar 

  10. Cole JE, Overpeck JT, Cook ER (2002) Multiyear La Nina events and persistent drought in the contiguous United States. Geophys Res Lett. https://doi.org/10.1029/2001GL013561

    Google Scholar 

  11. Compo GP, Whitaker JS, Sardeshmukh PD et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28

    Article  Google Scholar 

  12. Conover W (1980) Practical nonparametric statistics. Wiley, New York

    Google Scholar 

  13. Cook ER (1985) A time series analysis approach to tree ring standardization. Dissertation, University of Arizona, p 171

  14. Cook ER, Kairiukstis LA (1990) Methods of dendrochronology. Kluwer Academic Publishers, Boston

    Google Scholar 

  15. Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull 41:45–53

    Google Scholar 

  16. Cook ER, Meko DM, Stahle DW, Cleaveland MK (1999) Drought reconstructions for the continental United States. J Clim 12:1145–1163. https://doi.org/10.1175/1520-0442

    Article  Google Scholar 

  17. Cook ER, Seager R, Cane MA, Stahle DW (2007) North American drought: reconstructions, causes, and consequences. Earth Sci Rev 81:93–134. https://doi.org/10.1016/j.earscirev.2006.12.002

    Article  Google Scholar 

  18. Cook BI, Miller RL, Seager R (2009) Amplification of the North American “Dust Bowl” drought through human-induced land degradation. Proc Natl Acad Sci 106:4997–5001. https://doi.org/10.1073/pnas.0810200106

    Article  Google Scholar 

  19. Cook ER, Krusic PJ, Melvin TM (2014) Program RCSigFree. Tree ring Lab, Lamont Doherty Earth Observatory of Columbia University, Palisades

    Google Scholar 

  20. Crawford CJ, Griffin D, Kipfmueller KF (2015) Capturing season-specific precipitation signals in the northern Rocky Mountains, USA, using earlywood and latewood tree rings. J Geophys Res Biogeosci 120:428–440. https://doi.org/10.1002/2014JG002740

    Article  Google Scholar 

  21. Dai A (2001) Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J Clim 14:1112–1128. https://doi.org/10.1175/1520-0442

    Article  Google Scholar 

  22. Daly C, Neilson RP, Phillips DL (1994) A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J Appl Meteorol 33:140–158. https://doi.org/10.1175/1520-0450

    Article  Google Scholar 

  23. Dannenberg MP, Wise EK (2016) Seasonal climate signals from multiple tree ring metrics: a case study of Pinus ponderosa in the upper Columbia River Basin. J Geophys Res Biogeosci 121:1178–1189. https://doi.org/10.1002/2015JG003155

    Article  Google Scholar 

  24. Donat MG, King AD, Overpeck JT et al (2016) Extraordinary heat during the 1930s US Dust Bowl and associated large-scale conditions. Clim Dyn 46:413–426. https://doi.org/10.1007/s00382-015-2590-5

    Article  Google Scholar 

  25. Draper NR, Smith H (1981) Applied regression analysis. Wiley, New York

    Google Scholar 

  26. Ebisuzaki W (1997) A method to estimate the statistical significance of a correlation when the data are serially correlated. J Clim 10:2147–2153. https://doi.org/10.1175/1520-0442(1997)010%3C2147:AMTETS%3E2.0.CO;2

    Article  Google Scholar 

  27. Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080. https://doi.org/10.1029/2000GL012745

    Article  Google Scholar 

  28. Faulstich HL, Woodhouse CA, Griffin D (2013) Reconstructed cool- and warm-season precipitation over the tribal lands of northeastern Arizona. Clim Change 118:457–468. https://doi.org/10.1007/s10584-012-0626-y

    Article  Google Scholar 

  29. Feng S, Trnka M, Hayes M, Zhang Y (2017) Why do different drought indices show distinct future drought risk outcomes in the US Great Plains? J Clim 30:265–278. https://doi.org/10.1175/JCLI-D-15-0590.1

    Article  Google Scholar 

  30. Fritsch JM, Kane RJ, Chelius CR (1986) The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J Clim Appl Meteorol 25:1333–1345

    Article  Google Scholar 

  31. Fritts HC (1965) Tree ring evidences for climatic changes in western North America. Mon Weather Rev 93:421–443

    Article  Google Scholar 

  32. Fritts HC (1976) Tree rings and climate. Blackburn Press, Clarendan

    Google Scholar 

  33. Griffin D, Meko DM, Touchan R et al (2011) Latewood chronology development for summer-moisture reconstruction in the US southwest. Tree Ring Res 67:87–101. https://doi.org/10.3959/2011-4.1

    Article  Google Scholar 

  34. Griffin D, Woodhouse CA, Meko DM et al (2013) North American monsoon precipitation reconstructed from tree-ring latewood. Geophys Res Lett 40:954–958. https://doi.org/10.1002/grl.50184

    Article  Google Scholar 

  35. Harding KJ, Snyder PK (2015) The relationship between the Pacific-North American teleconnection pattern, the Great Plains low-level jet, and north central US heavy rainfall events. J Clim 28:6729–6742. https://doi.org/10.1175/JCLI-D-14-00657.1

    Article  Google Scholar 

  36. Herweijer C, Seager R, Cook ER (2006) North American droughts of the mid to late nineteenth century: a history, simulation and implication for Mediaeval drought. Holocene 16:159–171. https://doi.org/10.1191/0959683606hl917rp

    Article  Google Scholar 

  37. Higgins RW, Yao Y, Yarosh ES, et al (1997) Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J Clim 10:481–507. https://doi.org/10.1175/1520-0442(1997)010%3C0481:IOTGPL%3E2.0.CO;2

    Article  Google Scholar 

  38. Hirschboeck K (1991) Climate and floods: national water summary, 1988–1989—floods and droughts: hydrologic perspective on water issues. US Geological Survey Water-Supply Paper 2375, pp 67–88

  39. Hoaglin DC, Mosteller F, Tukey JW (2000) Understanding robust and exploratory data analysis. Wiley, New York

    Google Scholar 

  40. Hoerling M, Quan XW, Eischeidi J (2009) Distinct causes for two principal US droughts of the 20th century. Geophys Res Lett. https://doi.org/10.1029/2009GL039860

    Google Scholar 

  41. Hoerling M, Kumar A, Dole R, Nielsen-Gammon JW, Eischeid J, Perlwitz J, Quan XW, Zhang T, Pegion P, Chen M (2013) Anatomy of an extreme event. J Clim 26(9):2811–2832

    Article  Google Scholar 

  42. Hoerling M, Eischeid J, Kumar A et al (2014) Causes and predictability of the 2012 Great Plains drought. Bull Am Meteorol Soc 95:269–282. https://doi.org/10.1175/BAMS-D-13-00055.1

    Article  Google Scholar 

  43. Horel JD, Wallace JM (1981) Planetary-scale phenomena associated with the Southern Oscillation. Mon Weather Rev 109:813–829. https://doi.org/10.1175/1520-0493(1981)109%3C0813:PSAPAW%3E2.0.CO;2

    Article  Google Scholar 

  44. Hu Q, Feng S (2010) Influence of the Arctic oscillation on central United States summer rainfall. J Geophys Res 115:13. https://doi.org/10.1029/2009jd011805

    Article  Google Scholar 

  45. Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York

    Google Scholar 

  46. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. https://doi.org/10.1175/1520-0477

    Article  Google Scholar 

  47. Kaplan A, Cane MA, Kushnir Y et al (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103589:567–618. https://doi.org/10.1029/97JC01736

    Google Scholar 

  48. Karl TR (1986) The sensitivity of the palmer drought severity index and palmer’s Z-index to their calibration coefficients including potential evapotranspiration. J Clim Appl Meteorol 25:77–86. https://doi.org/10.1175/1520-0450

    Article  Google Scholar 

  49. Karl TR, Quayle RG, Karl TR, Quayle RG (1981) The 1980 summer heat wave and drought in historical perspective. Mon Weather Rev 109:2055–2073. https://doi.org/10.1175/1520-0493

    Article  Google Scholar 

  50. Karl T, Quinlan F, Ezell DS (1987) Drought termination and amelioration: its climatological probability. J Clim Appl Meteorol 26:1198–1209

    Article  Google Scholar 

  51. Krishnamurthy L, Vecchi GA, Msadek R et al (2015) The seasonality of the Great Plains low-level Jet and ENSO relationship. J Clim 28:4525–4544. https://doi.org/10.1175/JCLI-D-14-00590.1

    Article  Google Scholar 

  52. Leathers DJ, Palecki MA (1992) The Pacific North-American teleconnection pattern and United-States climate. 29 temporal characteristics and index specification. J Clim 5:707–716. https://doi.org/10.1175/1520-0442(1992)005%3C0707:Tpatpa%3E2.0.Co;2

    Article  Google Scholar 

  53. Little EL (1971) Atlas of the United States trees, Volume 1, Conifers and important hardwoods. US Department of Agriculture Miscellaneous publications

  54. Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58:35–44. https://doi.org/10.1023/A:1015820616384

    Article  Google Scholar 

  55. Meko DM, Baisan CH (2001) Pilot study of latewood-width of conifers as an indicator of variability of summer rainfall in the North American monsoonregion. Int J Climatol 21:697–708. https://doi.org/10.1002/joc.646

    Article  Google Scholar 

  56. Melvin TM, Briffa KR (2008) A “signal-free” approach to dendroclimatic standardisation. Dendrochronologia 26:71–86. https://doi.org/10.1016/j.dendro.2007.12.001

    Article  Google Scholar 

  57. Mo KC, Lettenmaier DP (2016) Precipitation deficit flash droughts over the United States. J Hydrometeorol 17:1169–1184. https://doi.org/10.1175/JHM-D-15-0158.1

    Article  Google Scholar 

  58. Mock CJ (1991) Drought and precipitation fluctuations in the Great Plains during the late nineteenth century. Gt Plains Res 1:26–57

    Google Scholar 

  59. Mock CJ (1996) Climatic controls and spatial variations of precipitation in the western United States. J Clim 9:1111–1124. https://doi.org/10.1175/1520-0442

    Article  Google Scholar 

  60. Muhs DR, Holliday VT (1995) Evidence of active dune sand on the Great Plains in the 19th century from accounts of early explorers. Quat Res 43:198–208. https://doi.org/10.1006/qres.1995.1020

    Article  Google Scholar 

  61. Namias J (1982) Anatomy of Great Plains protracted heat waves (especially the 1980 US summer drought). Mon Weather Rev 110:824–838. https://doi.org/10.1175/1520-0493

    Article  Google Scholar 

  62. Palmer WC (1965) Meteorological Drought. US Weather Bureau. Res Pap No 45, 58

  63. Percival DB, Constantine WLB (2006) Exact simulation of Gaussian time series from nonparametric spectral estimates with application to bootstrapping. Stat Comput 16:25–35. https://doi.org/10.1007/s11222-006-5198-0

    Article  Google Scholar 

  64. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115:1606–1626. https://doi.org/10.1175/1520-0493(1987)115%3C1606:GARSPP%3E2.0.CO;2

    Article  Google Scholar 

  65. Ruiz-Barradas A, Nigam S (2005) Warm season rainfall variability over the US Great Plains in observations, NCEP and ERA-40 reanalyses, and NCAR and NASA atmospheric model simulations. J Clim 18:1808–1830. https://doi.org/10.1175/JCLI3343.1

    Article  Google Scholar 

  66. Sauchyn DJ, Skinner WR (2001) A proxy record of drought severity for the Southwestern Canadian Plains. Can Water Resour J 26:253–272

    Article  Google Scholar 

  67. Schulman E (1942) Dendrochronology in pines of Arkansas. Ecology 23:309–318

    Article  Google Scholar 

  68. Seager R, Kushnir Y, Herweijer C et al (2005) Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J Clim 18:4065–4088. https://doi.org/10.1175/JCLI3522.1

    Article  Google Scholar 

  69. Sieg CH, Meko D, Ni W (1996) Dendroclimatic potential in the northern Great Plains. In: Dean JS, Meko DM, Swetnam TW (eds) Tree rings, environment and humanity. Radiocarbon (International radiocarbon conference). University of Arizona, Tucson, pp 295–302

    Google Scholar 

  70. St. George S, Meko DM, Girardin MP et al (2009) The tree-ring record of drought on the Canadian Prairies. J Clim 22:689–710. https://doi.org/10.1175/2008JCLI2441.1

    Article  Google Scholar 

  71. Stahle DW, Cleaveland MK (1988) Texas drought history reconstructed and analyzed from 1698 to 1980. J Clim 1:59–74

    Article  Google Scholar 

  72. Stahle DW, Cleaveland MK, Grissino-Mayer HD et al (2009) Cool- and warm-season precipitation reconstructions over western New Mexico. J Clim 22:3729–3750. https://doi.org/10.1175/2008JCLI2752.1

    Article  Google Scholar 

  73. Stockton D, Meko D (1983) Drought recurrence in the Great Plains as reconstructed from long-term tree ring records. J Clim Appl Meteorol 22:17–29

    Article  Google Scholar 

  74. Stokes MA, Smiley TL (1996) An introduction to tree-ring dating. University of Arizona Press, Tucson, AZ

    Google Scholar 

  75. Therrell MD, Stahle DW, Cleaveland MK, Villanueva-Diaz J (2002) Warm season tree growth and precipitation over Mexico. J Geophys Res Atmos. https://doi.org/10.1029/2001JD000851

    Google Scholar 

  76. Torbenson MCA, Stahle DW (2018) The relationship between cool and warm season moisture over the central United States, 1685–2015. J Clim. https://doi.org/10.1175/JCLI-D-17-0593.1

    Google Scholar 

  77. Villanueva-Diaz J, Stahle DW, Luckman BH et al (2007) Winter–spring precipitation reconstructions from tree rings for northeast Mexico. Clim Change 83:117–131. https://doi.org/10.1007/s10584-006-9144-0

    Article  Google Scholar 

  78. Wang SY, Chen TC (2009) The late-spring maximum of rainfall over the US central plains and the role of the low-level jet. J Clim 22:4696–4709. https://doi.org/10.1175/2009JCLI2719.1

    Article  Google Scholar 

  79. Wang SY, Davies RE, Gillies RR (2013) Identification of extreme precipitation threat across midlatitude regions based on short-wave circulations. J Geophys Res Atmos 118:11059–11074. https://doi.org/10.1002/jgrd.50841

    Article  Google Scholar 

  80. Watson E, Luckman BH (2002) The dendroclimatic signal in Douglas-fir and ponderosa pine tree-ring chronologies from the southern Canadian Cordillera. Can J For Res 32:1858–1874. https://doi.org/10.1139/x02-096

    Article  Google Scholar 

  81. Watson E, Luckman BH (2004) Tree-ring based reconstructions of precipitation for the southern Canadian Cordillera. Clim Change 65:209–241. https://doi.org/10.1023/B:CLIM.0000037487.83308.02

    Article  Google Scholar 

  82. Weaver SJ, Nigam S (2008) Variability of the Great Plains low-level jet: large-scale circulation context and hydroclimate impacts. J Clim 21:1532–1551. https://doi.org/10.1175/2007JCLI1586.1

    Article  Google Scholar 

  83. Weaver SJ, Nigam S (2011) Recurrent supersynoptic evolution of the Great Plains low-level Jet. J Clim 24:575–582. https://doi.org/10.1175/2010JCLI3445.1

    Article  Google Scholar 

  84. Wells PV, Kilham L, Moloney JB (1965) Scarp woodlands, transported grassland soils, and concept of grassland climate in the Great Plains Region. Science 148:246–249. https://doi.org/10.1126/science.148.3667.246

    Article  Google Scholar 

  85. Woodhouse C, Brown PM (2001) Tree-ring evidence for Great Plains drought. Tree Ring Res 57:89–103

    Google Scholar 

  86. Woodhouse CA, Overpeck JT (1998) 2000 years of drought variability in the central United States. Bull Am Meteorol Soc 79:2693–2714. https://doi.org/10.1175/1520-0477

    Article  Google Scholar 

  87. Woodhouse CA, Meko DM, Griffin D, Castro CL (2013) Tree rings and multiseason drought variability in the lower Rio Grande Basin, USA. Water Resour Res 49:844–850. https://doi.org/10.1002/wrcr.20098

    Article  Google Scholar 

Download references

Acknowledgements

We thank Connie Woodhouse and David Meko for use of their tree-ring collections from the Great Plains, and Chris Baisan, Peter Brown, Cary Mock, and Dorian Burnette for advice and assistance. This study was funded by the National Science Foundation (Grant #AGS-1266014).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ian M. Howard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3249 KB)

Appendix

Appendix

Year NP spring percentiles NP summer percentiles SP spring percentiles SP summer percentiles
1867 NA NA 100 55
1868 NA NA 45 170
1869 NA NA 150 90
1870 NA NA 70 100
1871 NA NA 70 50
1872 NA NA 210 215
1873 NA NA 120 105
1874 NA NA 130 45
1875 NA NA 80 175
1876 NA NA 75 110
1877 145 40 130 90
1878 155 90 140 125
1879 180 190 75 100
1880 140 170 40 180
1881 100 80 85 110
1882 105 120 140 80
1883 65 75 80 75
1884 75 150 150 110
1885 110 105 100 160
1886 90 45 110 120
1887 85 150 160 100
1888 115 125 130 110
1889 70 65 100 70
1890 125 45 100 80
  1. Precipitation percentiles from Mock’s (1991) analysis of nineteenth century weather for the two regions that are closest to the Northern Plains (NP) and Southern Plains (SP) study area

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Howard, I.M., Stahle, D.W. & Feng, S. Separate tree-ring reconstructions of spring and summer moisture in the northern and southern Great Plains. Clim Dyn 52, 5877–5897 (2019). https://doi.org/10.1007/s00382-018-4485-8

Download citation

Keywords

  • Southern Plains
  • Summer Moisture Variability
  • Moisture Reversals
  • Palmer Drought Severity Index (PDSI)
  • Moisture Balance